Numerical Approximations for the Variable Coefficient Fractional Diffusion Equations with Non-smooth Data

被引:8
|
作者
Zheng, Xiangcheng [1 ]
Ervin, Vincent J. [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
Fractional Diffusion Equation; Jacobi Polynomials; Spectral Method; LEVY-FELLER DIFFUSION; VARIATIONAL FORMULATION; DIFFERENTIAL-EQUATIONS; SPECTRAL METHOD; EFFICIENT;
D O I
10.1515/cmam-2019-0038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the numerical approximation of a variable coefficient fractional diffusion equation. Using a change of variable, the variable coefficient fractional diffusion equation is transformed into a constant coefficient fractional diffusion equation of the same order. The transformed equation retains the desirable stability property of being an elliptic equation. A spectral approximation scheme is proposed and analyzed for the transformed equation, with error estimates for the approximated solution derived. An approximation to the unknown of the variable coefficient fractional diffusion equation is then obtained by post-processing the computed approximation to the transformed equation. Error estimates are also presented for the approximation to the unknown of the variable coefficient equation with both smooth and non-smooth diffusivity coefficient and right-hand side. Numerical experiments are presented to test the performance of the proposed method.
引用
收藏
页码:573 / 589
页数:17
相关论文
共 50 条
  • [41] SMOOTH AND NON-SMOOTH REGULARIZATIONS OF THE NONLINEAR DIFFUSION EQUATION
    Tomassetti, Giuseppe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (06): : 1519 - 1537
  • [42] Fractional differentiability of the non-smooth heat curve
    Wu Guo-Cheng
    Shi Xiang-Chao
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [43] Detection of dead cores for reaction-diffusion equations with a non-smooth nonlinearity
    Hingyi, B.
    Karatson, J.
    APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 111 - 122
  • [44] Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations
    Wei, Yabing
    Zhao, Yanmin
    Wang, Fenling
    Tang, Yifa
    Yang, Jiye
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4411 - 4429
  • [45] Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations
    Yabing Wei
    Yanmin Zhao
    Fenling Wang
    Yifa Tang
    Jiye Yang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4411 - 4429
  • [46] Superconvergence of FEM for Distributed Order Time Fractional Variable Coefficient Diffusion Equations
    Yang, Yanhua
    Ren, Jincheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1529 - 1545
  • [47] Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions
    Guillén-González, F
    Rodríguez-Bellido, MA
    Rojas-Medar, MA
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (06): : 807 - 826
  • [48] FRACTIONAL HERMITE INTERPOLATION FOR NON-SMOOTH FUNCTIONS
    Zhai, Jiayin
    Zhang, Zhiyue
    Wang, Tongke
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 (52): : 113 - 131
  • [49] On numerical contour integral method for fractional diffusion equations with variable coefficients
    Vong, Seakweng
    Lyu, Pin
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 137 - 142
  • [50] Effective numerical treatment of sub-diffusion equation with non-smooth solution
    Yang, Zongze
    Wang, Jungang
    Li, Yan
    Nie, Yufeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1394 - 1407