Nonlinear piezoelectric surface acoustic waves

被引:0
|
作者
Cormack, John M. [1 ,3 ]
Ilinskii, Yurii A. [2 ,4 ]
Zabolotskaya, Evgenia A. [2 ,4 ]
Hamilton, Mark F. [2 ,4 ]
机构
[1] Univ Pittsburgh, Ctr Ultrasound Mol Imaging & Therapeut, Dept Med, Med Ctr, Pittsburgh, PA 15261 USA
[2] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
[3] Univ Pittsburgh, Vasc Med Inst, Med Ctr, Pittsburgh, PA 15261 USA
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
来源
基金
美国国家科学基金会;
关键词
DIELECTRIC-CONSTANTS; PROPAGATION; EVOLUTION; PLANE; SAW;
D O I
10.1121/10.0009770
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The theory for nonlinear surface acoustic waves in crystals developed using Hamiltonian mechanics [Hamilton, Il'inskii, and Zabolotskaya, J. Acoust. Soc. Am. 105, 639 (1999)] is modified to account for piezoelectric material properties. The derived spectral evolution equations permit analysis of nonlinear surface wave propagation along a cut surface of any orientation with respect to the crystallographic axes and for piezoelectric crystals with any symmetry. Numerical simulations of waveform distortion in the particle velocity and electric field components are presented for surface wave propagation in Y-cut lithium niobate along the X- and Z-crystallographic axes. The influence of piezoelectricity is illustrated by comparing the nonlinear evolution of waveforms along a surface bounded by a vacuum (free space) and an ideal conductor (short circuit). Contributions to the nonlinearity from elasticity, piezoelectricity, electrostriction, and dielectricity are quantified separately for the two boundary conditions. (c) 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009770
引用
收藏
页码:1829 / 1846
页数:18
相关论文
共 50 条
  • [31] NONLINEAR EFFECTS IN ACOUSTIC SURFACE-WAVES
    NAKAGAWA, Y
    YAMANOUCHI, K
    SHIBAYAMA, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1972, 55 (10): : 1 - 7
  • [32] INTERMODULATION DISTORTION OF NONLINEAR PIEZOELECTRIC SURFACE-WAVES
    TUPHOLME, GE
    HARVEY, AP
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1992, 40 (07) : 1651 - 1661
  • [33] Existence of the branch of fast surface acoustic waves on piezoelectric substrates
    Darinskii, AN
    Weihnacht, M
    WAVE MOTION, 2002, 36 (01) : 87 - 102
  • [34] An Analysis of Propagation of Surface Acoustic Waves in Rotating Piezoelectric Plates
    Wang, Ji
    Wu, Rongxing
    Du, Jianke
    Huang, Dejin
    2008 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM, VOLS 1 AND 2, 2008, : 148 - 151
  • [35] AMPLIFICATION OF ACOUSTIC SURFACE WAVES WITH ADJACENT SEMICONDUCTOR AND PIEZOELECTRIC CRYSTALS
    COLLINS, JH
    LAKIN, KM
    QUATE, CF
    SHAW, HJ
    APPLIED PHYSICS LETTERS, 1968, 13 (09) : 314 - +
  • [36] Surface and interface shear horizontal acoustic waves in piezoelectric superlattices
    Bousfia, A
    El Boudouti, EH
    Bria, D
    Nougaoui, A
    Djafari-Rouhani, B
    Velasco, VR
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) : 4507 - 4513
  • [37] ACOUSTIC SURFACE-WAVES IN PIEZOELECTRIC CUBIC-CRYSTALS
    DELRIO, JCG
    VELASCO, VR
    SURFACE SCIENCE, 1985, 162 (1-3) : 138 - 143
  • [38] Spatial dispersion of short surface acoustic waves in piezoelectric ceramics
    X. -F. Li
    J. S. Yang
    Q. Jiang
    Acta Mechanica, 2005, 180 : 11 - 20
  • [39] Spatial dispersion of short surface acoustic waves in piezoelectric ceramics
    Li, XF
    Yang, JS
    Jiang, Q
    ACTA MECHANICA, 2005, 180 (1-4) : 11 - 20
  • [40] Strong enhancement of surface diffusion by nonlinear surface acoustic waves
    Shugaev, Maxim V.
    Manzo, Anthony J.
    Wu, Chengping
    Zaitsev, Vladimir Yu.
    Helvajian, Henry
    Zhigilei, Leonid V.
    PHYSICAL REVIEW B, 2015, 91 (23)