We study Nijenhuis structures on Courant algebroids in terms of the canonical Poisson bracket on their symplectic realizations. We prove that the Nijenhuis torsion of a skew-symmetric endomorphism N of a Courant algebroid is skewsymmetric if N (2) is proportional to the identity, and only in this case when the Courant algebroid is irreducible. We derive a necessary and sufficient condition for a skewsymmetric endomorphism to give rise to a deformed Courant structure. In the case of the double of a Lie bialgebroid (A, A*), given an endomorphism N of A that defines a skew-symmetric endomorphism N of the double of A, we prove that the torsion ofN is the sum of the torsion of N and that of the transpose of N.
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Dalian Univ Technol, Sch Math, Dalian 116024, Peoples R China
Courant Res Ctr, Gottingen, GermanyJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
机构:
Univ Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, LuxembourgUniv Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
Bruce, Andrew James
Grabowski, Janusz
论文数: 0引用数: 0
h-index: 0
机构:
Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, PolandUniv Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg