We study Nijenhuis structures on Courant algebroids in terms of the canonical Poisson bracket on their symplectic realizations. We prove that the Nijenhuis torsion of a skew-symmetric endomorphism N of a Courant algebroid is skewsymmetric if N (2) is proportional to the identity, and only in this case when the Courant algebroid is irreducible. We derive a necessary and sufficient condition for a skewsymmetric endomorphism to give rise to a deformed Courant structure. In the case of the double of a Lie bialgebroid (A, A*), given an endomorphism N of A that defines a skew-symmetric endomorphism N of the double of A, we prove that the torsion ofN is the sum of the torsion of N and that of the transpose of N.
机构:
IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Bursztyn, Henrique
Drummond, Thiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Matemat, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Drummond, Thiago
Netto, Clarice
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
机构:
Univ Paris Diderot, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France
Penn State Univ, Dept Math, University Pk, PA 16802 USAUniv Paris Diderot, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France