Graph Structure Learning for Robust Graph Neural Networks

被引:379
|
作者
Jin, Wei [1 ]
Ma, Yao [1 ]
Liu, Xiaorui [1 ]
Tang, Xianfeng [2 ]
Wang, Suhang [2 ]
Tang, Jiliang [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1145/3394486.3403049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs. However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks. Adversarial attacks can easily fool GNNs in making predictions for downstream tasks. The vulnerability to adversarial attacks has raised increasing concerns for applying GNNs in safety-critical applications. Therefore, developing robust algorithms to defend adversarial attacks is of great significance. A natural idea to defend adversarial attacks is to clean the perturbed graph. It is evident that real-world graphs share some intrinsic properties. For example, many real-world graphs are low-rank and sparse, and the features of two adjacent nodes tend to be similar. In fact, we find that adversarial attacks are likely to violate these graph properties. Therefore, in this paper, we explore these properties to defend adversarial attacks on graphs. In particular, we propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model from the perturbed graph guided by these properties. Extensive experiments on real-world graphs demonstrate that the proposed framework achieves significantly better performance compared with the state-of-the-art defense methods, even when the graph is heavily perturbed. We release the implementation of Pro-GNN to our DeepRobust repository for adversarial attacks and defenses(1).
引用
收藏
页码:66 / 74
页数:9
相关论文
共 50 条
  • [41] Graph Mining with Graph Neural Networks
    Jin, Wei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1119 - 1120
  • [42] Robust graph neural networks based on feature fusion
    Jin, Yan
    Shi, Haoyu
    Meng, Huaiye
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [43] Reliable Graph Neural Networks via Robust Aggregation
    Geisler, Simon
    Zuegner, Daniel
    Guennemann, Stephan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [44] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [46] Robust graph structure learning under heterophily
    Xie, Xuanting
    Chen, Wenyu
    Kang, Zhao
    NEURAL NETWORKS, 2025, 185
  • [47] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [48] Learning Ice Accretion with Graph Neural Networks
    Shumilin, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2887 - 2892
  • [49] Learning the Geodesic Embedding with Graph Neural Networks
    Pang, Bo
    Zheng, Zhongtian
    Wang, Guoping
    Wang, Peng-Shuai
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [50] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574