Nonlinear heat conduction with time-dependent flux

被引:0
|
作者
De Lillo, S [1 ]
Di Gregorio, G
机构
[1] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial/boundary value problem on the semiline for the nonlinear heat conduction equation is solved with a general initial datum and a discontinuous flux boundary condition at the origin.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 50 条
  • [31] Pyrolysis and spontaneous ignition of wood under time-dependent heat flux
    Zhai, Chunjie
    Gong, Junhui
    Zhou, Xiaodong
    Peng, Fei
    Yang, Lizhong
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 125 : 100 - 108
  • [32] LONG-TIME SOLUTIONS TO HEAT-CONDUCTION TRANSIENTS WITH TIME-DEPENDENT INPUTS
    MYERS, GE
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1980, 102 (01): : 115 - 120
  • [33] Estimation of the Time-Dependent Heat Flux Using the Temperature Distribution at a Point
    Mohammadiun, M.
    Rahimi, Asghar B.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (04) : 971 - 981
  • [34] Estimation of the Time-Dependent Heat Flux Using the Temperature Distribution at a Point
    M. Mohammadiun
    Asghar B. Rahimi
    Arabian Journal for Science and Engineering, 2013, 38 : 971 - 981
  • [35] A direct integration approach for the estimation of time-dependent boundary heat flux
    Sin Kim
    Min-Chan Kim
    Kyung Youn Kim
    KSME International Journal, 2002, 16 : 1320 - 1326
  • [36] A Revised Approach for One-Dimensional Time-Dependent Heat Conduction in a Slab
    Caffagni, A.
    Angeli, D.
    Barozzi, G. S.
    Polidoro, S.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (03):
  • [37] Solution of a time-dependent heat conduction problem by an integral-equation approach
    Leindl, Mario
    Oberaigner, Eduard R.
    Antretter, Thomas
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 52 (01) : 178 - 181
  • [38] Identification of a Time-Dependent Coefficient in Heat Conduction Problem by New Iteration Method
    Huang, Dejian
    Li, Yanqing
    Pei, Donghe
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [39] On the sources placement in the method of fundamental solutions for time-dependent heat conduction problems
    Grabski, Jakub Krzysztof
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 88 : 33 - 51
  • [40] Identification of the time-dependent perfusion coefficient in the bio-heat conduction equation
    Lesnic, D.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (08): : 753 - 764