A note on a discrete model for the harmonic oscillator Schrodinger equation in N-cartesian coordinates

被引:1
|
作者
Mickens, RE [1 ]
机构
[1] Clark Atlanta Univ, Dept Phys, Atlanta, GA 30314 USA
关键词
partial difference equations; separation of variables; harmonic oscillator; Schrodinger equation;
D O I
10.1080/10236190500127539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a discrete model for the time-independent harmonic oscillator Schrodinger partial differential equation and demonstrate that it can be separated into N ordinary difference equations for the case of N-cartesian space coordinates.
引用
收藏
页码:779 / 782
页数:4
相关论文
共 50 条
  • [1] DISCRETE-TIME SCHRODINGER EQUATION FOR LINEAR HARMONIC-OSCILLATOR
    CASAGRANDE, F
    MONTALDI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 44 (04): : 453 - 464
  • [2] Regularity of the Schrodinger equation for the harmonic oscillator
    Bongioanni, Bruno
    Rogers, Keith M.
    ARKIV FOR MATEMATIK, 2011, 49 (02): : 217 - 238
  • [3] Exact solutions to the N-body Schrodinger equation for the harmonic oscillator
    Ma, ZQ
    FOUNDATIONS OF PHYSICS LETTERS, 2000, 13 (02) : 167 - 178
  • [4] The Schrodinger equation along curves and the quantum harmonic oscillator
    Lee, Sanghyuk
    Rogers, Keith M.
    ADVANCES IN MATHEMATICS, 2012, 229 (03) : 1359 - 1379
  • [5] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Castro, Airton
    Cuevas, Claudio
    Lizama, Carlos
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [6] The discrete and periodic heat and harmonic oscillator equation
    Hilger, Stefan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (8-9) : 741 - 793
  • [7] A perturbation theory for the discrete harmonic oscillator equation
    Cuevas, Claudio
    de Souza, Julio Cesar
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (12) : 1413 - 1428
  • [8] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Airton Castro
    Claudio Cuevas
    Carlos Lizama
    Advances in Difference Equations, 2009
  • [9] A Parallel Code for Solving the Molecular Time Dependent Schrodinger Equation in Cartesian Coordinates
    Suarez, J.
    Stamatiadis, S.
    Farantos, S. C.
    Lathouwers, L.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 241 - 245
  • [10] Newton equation and Schrodinger equation for the harmonic oscillator with probability distributions in frequency
    Chung, Won Sang
    Hassanabadi, Hassan
    Kriz, Jan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 558