A perturbation theory for the discrete harmonic oscillator equation

被引:0
|
作者
Cuevas, Claudio [1 ]
de Souza, Julio Cesar [1 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
discrete time; stability; discrete maximal regularity; perturbation theory; discrete harmonic oscillator; FOURIER MULTIPLIER THEOREMS; MAXIMAL REGULARITY; INTEGRODIFFERENTIAL EQUATIONS; PARABOLIC EQUATIONS; DIFFERENCE-SCHEMES; PERIODIC-SOLUTIONS; CAUCHY-PROBLEMS; INFINITE DELAY; WELL-POSEDNESS; EXISTENCE;
D O I
10.1080/10236190902824204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the existence, uniqueness and stability of solutions for the semilinear discrete harmonic oscillator equation on Banach spaces by using recent characterization of maximal regularity for a best difference approximation of the discrete harmonic oscillator equation.
引用
收藏
页码:1413 / 1428
页数:16
相关论文
共 50 条
  • [1] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Castro, Airton
    Cuevas, Claudio
    Lizama, Carlos
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [2] The discrete and periodic heat and harmonic oscillator equation
    Hilger, Stefan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (8-9) : 741 - 793
  • [3] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Airton Castro
    Claudio Cuevas
    Carlos Lizama
    Advances in Difference Equations, 2009
  • [4] Discrete models of the harmonic oscillator and a discrete analogue of Gauss' hypergeometric equation
    Grünbaum, FA
    RAMANUJAN JOURNAL, 2001, 5 (03): : 263 - 270
  • [5] Discrete Models of the Harmonic Oscillator and a Discrete Analogue of Gauss' Hypergeometric Equation
    F. Alberto Grünbaum
    The Ramanujan Journal, 2001, 5 : 263 - 270
  • [6] The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
    Barker, L
    Candan, C
    Hakioglu, T
    Kutay, MA
    Ozaktas, HM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11): : 2209 - 2222
  • [7] APPLICATION OF THE EFFECTIVE HARMONIC-OSCILLATOR IN THERMODYNAMIC PERTURBATION-THEORY
    ERMAKOV, KV
    BUTAYEV, BS
    SPIRIDONOV, VP
    CHEMICAL PHYSICS LETTERS, 1988, 144 (5-6) : 497 - 502
  • [8] DISCRETE-TIME SCHRODINGER EQUATION FOR LINEAR HARMONIC-OSCILLATOR
    CASAGRANDE, F
    MONTALDI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 44 (04): : 453 - 464
  • [9] On the eigenvalues of the harmonic oscillator with a Gaussian perturbation
    Amore, Paolo
    Fernandez, Francisco M.
    Garcia, Javier
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (10):
  • [10] Synchronous Discrete Harmonic Oscillator
    Antippa, Adel F.
    Dubois, Daniel M.
    COMPUTING ANTICIPATORY SYSTEMS, 2008, 1051 : 82 - +