Discrete models of the harmonic oscillator and a discrete analogue of Gauss' hypergeometric equation

被引:6
|
作者
Grünbaum, FA [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
RAMANUJAN JOURNAL | 2001年 / 5卷 / 03期
基金
美国国家科学基金会;
关键词
bispectral problem; discrete hypergeometric equation;
D O I
10.1023/A:1012922627100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a doubly infinite discrete-discrete version of the bispectral problem and uncover a possible discrete analog of Gauss' equation.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [1] Discrete Models of the Harmonic Oscillator and a Discrete Analogue of Gauss' Hypergeometric Equation
    F. Alberto Grünbaum
    The Ramanujan Journal, 2001, 5 : 263 - 270
  • [2] The discrete and periodic heat and harmonic oscillator equation
    Hilger, Stefan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (8-9) : 741 - 793
  • [3] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Castro, Airton
    Cuevas, Claudio
    Lizama, Carlos
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [4] A perturbation theory for the discrete harmonic oscillator equation
    Cuevas, Claudio
    de Souza, Julio Cesar
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (12) : 1413 - 1428
  • [5] Maximal Regularity of the Discrete Harmonic Oscillator Equation
    Airton Castro
    Claudio Cuevas
    Carlos Lizama
    Advances in Difference Equations, 2009
  • [6] The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
    Barker, L
    Candan, C
    Hakioglu, T
    Kutay, MA
    Ozaktas, HM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11): : 2209 - 2222
  • [7] A discrete analogue of the harmonic morphism
    Urakawa, H
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 97 - 108
  • [8] Synchronous Discrete Harmonic Oscillator
    Antippa, Adel F.
    Dubois, Daniel M.
    COMPUTING ANTICIPATORY SYSTEMS, 2008, 1051 : 82 - +
  • [9] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [10] Hyperincursive discrete harmonic oscillator
    Antippa, Adel F.
    Dubois, Daniel M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)