Identification of Materials Using a Microwave Sensor Array and Machine Learning

被引:2
|
作者
Harrison, Luke [1 ]
Ravan, Maryam [1 ]
Zhang, Kunyi [1 ]
Amineh, Reza K. [1 ]
机构
[1] New York Inst Technol, Dept Elect & Comp Engn, New York, NY 10023 USA
关键词
machine learning; material identification; microwave sensor array;
D O I
10.1109/ACES53325.2021.00166
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Material identification has many applications in non-destructive testing, chemistry, infrastructure maintenance, etc. Here, for this purpose, we propose a technique based on the use of a microwave sensor array with the elements of the array resonating at various frequencies within a wide range and applying machine learning algorithms on the collected data. Compared to the widely use single resonating sensors, the proposed methodology allows for material characterization over a wide frequency range which, in turn, improves the accuracy of the material identification procedure. The performance of the proposed methodology is tested via the use of easily available materials such as woods, cardboards, and plastics.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Identification of chimera using machine learning
    Ganaie, M. A.
    Ghosh, Saptarshi
    Mendola, Naveen
    Tanveer, M.
    Jalan, Sarika
    CHAOS, 2020, 30 (06)
  • [42] Landslide identification using machine learning
    Wang, Haojie
    Zhang, Limin
    Yin, Kesheng
    Luo, Hongyu
    Li, Jinhui
    GEOSCIENCE FRONTIERS, 2021, 12 (01) : 351 - 364
  • [43] Identification of catecholamine neurotransmitters using fluorescence sensor array
    Ghasemi, Forough
    Hormozi-Nezhad, M. Reza
    Mahmoudi, Morteza
    ANALYTICA CHIMICA ACTA, 2016, 917 : 85 - 92
  • [44] Identification of fruit using a flexible tactile sensor array
    Cai, Lihua
    Chen, Hongyao
    Zuo, Xue
    Wei, Yangyang
    Dong, Shuo
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2024, 52 (06) : 647 - 666
  • [45] A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification
    Kroutil, Jiri
    Laposa, Alexandr
    Ahmad, Ali
    Voves, Jan
    Povolny, Vojtech
    Klimsa, Ladislav
    Davydova, Marina
    Husak, Miroslav
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 411 - 423
  • [46] Automated Soft Pressure Sensor Array-Based Sea Lamprey Detection Using Machine Learning
    Shi, Hongyang
    Mei, Yu
    Gonzalez-Afanador, Ian
    Chen, Claudia
    Miehls, Scott
    Holbrook, Christopher
    Sepulveda, Nelson
    Tan, Xiaobo
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 7546 - 7557
  • [47] A Study of Diagnostic Accuracy Using a Chemical Sensor Array and a Machine Learning Technique to Detect Lung Cancer
    Huang, Chi-Hsiang
    Zeng, Chian
    Wang, Yi-Chia
    Peng, Hsin-Yi
    Lin, Chia-Sheng
    Chang, Che-Jui
    Yang, Hsiao-Yu
    SENSORS, 2018, 18 (09)
  • [48] Optimal sensor placement using machine learning
    Semaan, R.
    COMPUTERS & FLUIDS, 2017, 159 : 167 - 176
  • [49] Functionalized carbon quantum dots fluorescent sensor array assisted by a machine learning algorithm for rapid foodborne pathogens identification
    Xiao, Minghui
    Mei, Lianghui
    Qi, Jing
    Zhu, Liang
    Wang, Fangbin
    MICROCHEMICAL JOURNAL, 2024, 201
  • [50] Intelligent identification of picking periods of Lu'an Guapian tea by an indicator displacement colorimetric sensor array combined with machine learning
    Chen, Yao
    Li, Yuan
    Lin, Li-Lin
    Liao, Yue
    Fang, Huan
    Wang, Tong
    FOOD RESEARCH INTERNATIONAL, 2024, 195