Identification of Materials Using a Microwave Sensor Array and Machine Learning

被引:2
|
作者
Harrison, Luke [1 ]
Ravan, Maryam [1 ]
Zhang, Kunyi [1 ]
Amineh, Reza K. [1 ]
机构
[1] New York Inst Technol, Dept Elect & Comp Engn, New York, NY 10023 USA
关键词
machine learning; material identification; microwave sensor array;
D O I
10.1109/ACES53325.2021.00166
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Material identification has many applications in non-destructive testing, chemistry, infrastructure maintenance, etc. Here, for this purpose, we propose a technique based on the use of a microwave sensor array with the elements of the array resonating at various frequencies within a wide range and applying machine learning algorithms on the collected data. Compared to the widely use single resonating sensors, the proposed methodology allows for material characterization over a wide frequency range which, in turn, improves the accuracy of the material identification procedure. The performance of the proposed methodology is tested via the use of easily available materials such as woods, cardboards, and plastics.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Material Identification Using a Microwave Sensor Array and Machine Learning
    Harrsion, Luke
    Ravan, Maryam
    Tandel, Dhara
    Zhang, Kunyi
    Patel, Tanvi
    Amineh, Reza K.
    ELECTRONICS, 2020, 9 (02)
  • [2] Classification of plastic materials using machine-learning algorithms and microwave resonant sensor
    Covarrubias-Martinez, Dania
    Lobato-Morales, Humberto
    Ramirez-Cortes, Juan M.
    Alvarez-Botero, German A.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2022, 36 (12) : 1760 - 1775
  • [3] Prompt, Accurate, and Noncontact Material Identification Using a Single Microwave Sensor With Machine Learning Analysis
    Zhu, Chen
    Alsalman, Osamah
    Huang, Jie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [4] Experimental Microwave Target Identification Using Machine Learning
    Kettlewell, Clayton
    Hetjmanek, Kyle
    Scott, George
    Al-Shaikhli, Waleed
    Willig, Blake
    Nabulsi, Ala-Addin
    Baidya, Somen
    Derakhshani, Reza
    Hassan, Ahmed M.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 227 - 228
  • [5] Demodulation of an LPFG sensor cascaded by an FBG sensor array using machine learning
    Barino, Felipe
    Capelini, Renato
    Duarte, Caio
    Pamplona, Vitor
    dos Santos, Clayton Cesar
    Hamaji, Fernando
    Marcato, Andre Luiz
    Honorio, Leonardo
    dos Santos, Alexandre Bessa
    2024 LATIN AMERICAN WORKSHOP ON OPTICAL FIBER SENSORS, LAWOFS 2024, 2024,
  • [6] An identification approach for object shapes and materials using an ultrasonic sensor array
    Ohtani, Kozo
    Baba, Mitsuru
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 6014 - +
  • [7] Odor Sensor System Using Chemosensitive Resistor Array and Machine Learning
    Yatabe, Rui
    Shunori, Atsushi
    Wyszynski, Bartosz
    Hanai, Yosuke
    Nakao, Atsuo
    Nakatani, Masaya
    Oki, Akio
    Oka, Hiroaki
    Washio, Takashi
    Toko, Kiyoshi
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 2077 - 2083
  • [8] Impedimetric Hydrogel Sensor for the Identification of Hexose Using Machine Learning
    Roy, Dibakar
    Ali, Akbar
    Pal, Suchetan
    Adhikary, Avishek
    IEEE SENSORS JOURNAL, 2023, 23 (06) : 6272 - 6281
  • [9] Intelligent Sensor Array Based on Machine Learning
    Chen, Jinming
    He, Qingguo
    Cheng, Jiangong
    INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC TECHNOLOGY AND APPLICATION, 2020, 11617
  • [10] An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution
    Yang, Sen
    Wang, Yanxiong
    Jiang, Yanfeng
    Qiang, Tian
    BIOSENSORS-BASEL, 2025, 15 (01):