USING MULTISCALE MODELING TO ADVANCE INDUSTRIAL AND RESEARCH APPLICATIONS OF ADVANCED MATERIALS

被引:0
|
作者
Song, Nannan [1 ]
Jackson, Matthew [2 ]
Montgomery, Chris [2 ]
Wu, Shenghua [1 ]
Jain, Neraj [3 ]
Sweat, Rebekah [4 ]
Souza, Flavio [1 ]
机构
[1] Siemens Digital Ind Software, Mat Engn, Orlando, FL 32835 USA
[2] Solvay, Composite Mat, Greenville, SC 29602 USA
[3] German Aerosp Ctr, Inst Struct & Design, D-70569 Stuttgart, Germany
[4] FAMU FSU Coll Engn, High Performance Mat Inst, Dept Ind & Mfg Engn, 2005 Levy Ave, Tallahassee, FL 32310 USA
关键词
true multiscale modeling; FE2; fiber misalignment; ceramic matrix composites; carbon nanotubes; crack modeling; 2ND-ORDER COMPUTATIONAL HOMOGENIZATION; CARBON NANOTUBES; ASYMPTOTIC HOMOGENIZATION; COMPOSITE-MATERIALS; FE2; METHOD; MICROSTRUCTURES; TRANSITION; MESOSCALE; BEHAVIOR; FAILURE;
D O I
10.1615/IntJMultCompEng.2021039707
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multiscale simulation enables strong coupling of material behavior and component structural response while reducing computational time significantly. For that reason, multiscale modeling has been adopted by industries at a fast pace. For heterogeneous and anisotropic materials, this approach can give a better explanation of the global deformation behavior and specific failure mechanisms occurring at the microscale and how these affect the meso- and macroscales. Multiscale methods are very flexible and can be applied to a wide range of materials that possess any sort of heterogeneity, including embedded fibers, porosity, particles, and so forth. Additionally, manufacturing variability can be naturally accounted for by multiscale approaches. In this paper, three use cases illustrate different applications of FE2 multiscale simulation in industrial and academic environments. The first use case focuses on virtual testing of fiber reinforced composites for the purpose of expediting material development. Using a true FE2 method, independently measured constituent properties inform the representative volume element (RVE) enabling a true bottom-up approach to predict composite properties. The second case is the study of crack initiation and propagation due to thermal and mechanical effects of C/C-SiC material, where cracks in the matrix material or in the fiber/matrix interface can be modeled explicitly and results can be used to optimize the constituent materials allowing for fewer densification cycles. The third use case utilizes multiscale modeling in the research of advanced nanomaterials.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条
  • [41] Efficient multiscale modeling of heterogeneous materials using deep neural networks
    Fadi Aldakheel
    Elsayed S. Elsayed
    Tarek I. Zohdi
    Peter Wriggers
    Computational Mechanics, 2023, 72 : 155 - 171
  • [42] MULTISCALE MODELING FOR THE SCIENCE AND ENGINEERING OF MATERIALS
    Bi, Jing
    Hanke, Felix
    Ji, Huidi
    McLendon, Ross
    Todd, Stephen
    Dalrymple, Tod
    Salazar-Tio, Rafael
    Persson, Martin
    Chiavaccini, Eugenio
    Wescott, James
    Dietz, Stefan
    Schulze, Martin
    Schwoebel, Johannes
    Yao, Jiang
    Milman, Victor
    Mechin, Pierre Yves
    Wohlever, Chris
    Hurtado, Juan
    Oancea, Victor
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2021, 19 (03) : 1 - 80
  • [43] Efficient multiscale modeling of heterogeneous materials using deep neural networks
    Aldakheel, Fadi
    Elsayed, Elsayed S. S.
    Zohdi, Tarek I. I.
    Wriggers, Peter
    COMPUTATIONAL MECHANICS, 2023, 72 (01) : 155 - 171
  • [44] Multiscale modeling of crystalline energetic materials
    Ojeda, O.U.
    Çaǧin, T.
    Computers, Materials and Continua, 2010, 16 (02): : 127 - 173
  • [45] Multiscale Modeling of Amorphous Materials with Adaptivity
    Tan, V. B. C.
    Deng, M.
    Tay, T. E.
    Lim, K. M.
    IUTAM SYMPOSIUM ON MODELLING NANOMATERIALS AND NANOSYSTEMS, 2009, 13 : 37 - 42
  • [46] Multiscale studies and modeling of SPD materials
    Alexandrov, IV
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 : 772 - 776
  • [47] Progress in Multiscale Modeling of Silk Materials
    Brough, Harry D. A.
    Cheneler, David
    Hardy, John G.
    Biomacromolecules, 2024, 25 (11) : 6987 - 7014
  • [48] Multiscale Modeling of materials -: The role of analysis
    Conti, S
    DeSimone, A
    Dolzmann, G
    Müller, S
    Otto, F
    TRENDS IN NONLINEAR ANALYSIS, 2003, : 375 - 408
  • [49] Multiscale Modeling of Fatigue for Ductile Materials
    Oskay, Caglar
    Fish, Jacob
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2004, 2 (03) : 329 - 353
  • [50] Multiscale modeling in thermal materials processing
    Jaluria, Yogesh
    APPLIED THERMAL ENGINEERING, 2017, 111 : 1574 - 1580