Multiobjective optimization for dynamic environments

被引:0
|
作者
Bui, LT [1 ]
Branke, J [1 ]
Abbass, HA [1 ]
机构
[1] Univ New S Wales, Sch ITEE, Artificial Life & Adapt Robot Lab, ADFA,ARC Ctr Complex Syst, Canberra, ACT 2600, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the use of evolutionary multi-objective optimization methods (EMOs) for solving single-objective optimization problems in dynamic environments. A number of authors proposed the use of EMOs for maintaining diversity in a single objective optimization task, where they transform the single objective optimization problem into a multi-objective optimization problem by adding an artificial objective function. We extend this work by looking at the dynamic single objective task and examine a number of different possibilities for the artificial objective function. We adopt the Non-dominated Sorting Genetic Algorithm version 2 (NSGA2). The results show that the resultant formulations are promising and competitive to other methods for handling dynamic environments.
引用
收藏
页码:2349 / 2356
页数:8
相关论文
共 50 条
  • [41] Interaction-Based Prediction for Dynamic Multiobjective Optimization
    Liu, Xiao-Fang
    Xu, Xin-Xin
    Zhan, Zhi-Hui
    Fang, Yongchun
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1881 - 1895
  • [42] Generalized Immigration Schemes for Dynamic Evolutionary Multiobjective Optimization
    Azevedo, Carlos R. B.
    Araujo, Aluizio F. R.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2033 - 2040
  • [43] Weighted pointwise prediction method for dynamic multiobjective optimization
    Ahrari, Ali
    Elsayed, Saber
    Sarker, Ruhul
    Essam, Daryl
    Coello Coello, Carlos A.
    INFORMATION SCIENCES, 2021, 546 : 349 - 367
  • [44] A Scalable Test Suite for Continuous Dynamic Multiobjective Optimization
    Jiang, Shouyong
    Kaiser, Marcus
    Yang, Shengxiang
    Kollias, Stefanos
    Krasnogor, Natalio
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) : 2814 - 2826
  • [45] A directed search strategy for evolutionary dynamic multiobjective optimization
    Yan Wu
    Yaochu Jin
    Xiaoxiong Liu
    Soft Computing, 2015, 19 : 3221 - 3235
  • [46] Divergent exploration in design with a dynamic multiobjective optimization formulation
    Curtis, S. K.
    Mattson, C. A.
    Hancock, B. J.
    Lewis, P. K.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2013, 47 (05) : 645 - 657
  • [47] Evolutionary Dynamic Multiobjective Optimization: Benchmarks and Algorithm Comparisons
    Jiang, Shouyong
    Yang, Shengxiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 198 - 211
  • [48] Divergent exploration in design with a dynamic multiobjective optimization formulation
    S. K. Curtis
    C. A. Mattson
    B. J. Hancock
    P. K. Lewis
    Structural and Multidisciplinary Optimization, 2013, 47 : 645 - 657
  • [49] OPTIMIZATION OF DYNAMIC REGIONAL MODELS - AN INTERACTIVE MULTIOBJECTIVE APPROACH
    OLLERO, A
    ARACIL, J
    CAMACHO, EF
    LARGE SCALE SYSTEMS IN INFORMATION AND DECISION TECHNOLOGIES, 1984, 6 (01): : 1 - 12
  • [50] Immune clonal coevolutionary algorithm for dynamic multiobjective optimization
    Shang, Ronghua
    Jiao, Licheng
    Ren, Yujing
    Wang, Jia
    Li, Yangyang
    NATURAL COMPUTING, 2014, 13 (03) : 421 - 445