Direct-Indirect Hybrid Mode Implosion in Heavy Ion Inertial Fusion

被引:2
|
作者
Kawata, S. [1 ]
Miyazawa, K. [1 ]
Ogoyskii, A. I.
Kikuchi, T. [1 ]
Akasaka, Y. [1 ,2 ]
Iizuka, Y. [1 ]
机构
[1] Utsunomiya Univ, Yohtoh 7-1-2, Utsunomiya, Tochigi 3218585, Japan
[2] Tech Univ Varna, Varna, Bulgaria
关键词
D O I
10.1088/1742-6596/112/3/032028
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A direct-indirect hybrid implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the centre of a fusion reactor chamber. In a direct-driven implosion mode, dz of similar to 20 mu m was tolerable, and in an indirect-implosion mode, dz of similar to 100 mu m was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer the radiation transport is expected to smooth the HIB illumination non-uniformity in the lateral direction. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect hybrid-mode target. Our simulation results present that a large pellet displacement of similar to a few hundred mu m is allowed in order to obtain a sufficient fusion energy output in HIF.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Wobbling heavy ion beam illumination in heavy ion inertial fusion
    Kawata, Shigeo
    Kurosaki, Tatsuya
    Koseki, Shunsuke
    Noguchi, Kenta
    Barada, Daisuke
    Ogoyski, Alexander Ivanov
    Barnard, John J.
    Logan, B. Grant
    Plasma and Fusion Research, 2013, 8 (SPL.ISS.2):
  • [32] The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments
    Ralph, J. E.
    Landen, O.
    Divol, L.
    Pak, A.
    Ma, T.
    Callahan, D. A.
    Kritcher, A. L.
    Doppner, T.
    Hinkel, D. E.
    Jarrott, C.
    Moody, J. D.
    Pollock, B. B.
    Hurricane, O.
    Edwards, M. J.
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [33] Implosion uniformity improvement of fuel target in heavy ion fusion
    Karino, T.
    Kawata, S.
    Suzuki, T.
    Kondo, S.
    Iinuma, T.
    Barada, D.
    Ogoyski, A. I.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [34] HEAVY-ION ACCELERATORS FOR INERTIAL FUSION
    TENG, LC
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1981, 28 (03) : 3110 - 3114
  • [35] HEAVY-ION INERTIAL FUSION - THE DRIVER
    SESSLER, AM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 969 - 969
  • [36] HEAVY-ION ACCELERATORS FOR INERTIAL FUSION
    RUBBIA, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1993, 106 (11): : 1429 - 1444
  • [37] Beam dynamics for heavy ion inertial fusion
    Deutsch, C
    CYCLOTRONS AND THEIR APPLICATIONS 1998, 1999, : 34 - 41
  • [38] Effects of Radial Thermal Conduction and Radiation Transport During Fuel Pellet Implosion in Heavy-Ion Inertial Fusion
    Watanabe, Naoto
    Takahashi, Kazumasa
    Sasaki, Toru
    Kikuchi, Takashi
    PLASMA AND FUSION RESEARCH, 2022, 17
  • [39] Effects of Radial Thermal Conduction and Radiation Transport During Fuel Pellet Implosion in Heavy-Ion Inertial Fusion
    Watanabe N.
    Takahashi K.
    Sasaki T.
    Kikuchi T.
    Plasma and Fusion Research, 2022, 17
  • [40] Direct drive heavy-ion-beam inertial fusion at high coupling efficiency
    Logan, B. G.
    Perkins, L. J.
    Barnard, J. J.
    PHYSICS OF PLASMAS, 2008, 15 (07)