A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM

被引:93
|
作者
Perugia, Ilaria [1 ,2 ]
Pietra, Paola [3 ]
Russo, Alessandro [4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] CNR, Ist Matemat Appl & Tecnol Informat Enrico Magenes, I-27100 Pavia, Italy
[4] Univ Milano Bicocca, I-20126 Milan, Italy
关键词
Helmholtz equation; virtual element method; plane wave basis functions; error analysis; duality estimates; DISCONTINUOUS GALERKIN METHODS; WEAK VARIATIONAL FORMULATION; LINEAR ELASTICITY PROBLEMS; LAGRANGE MULTIPLIERS; POLYGONAL MESHES; EQUATION; TREFFTZ; ACOUSTICS; VERSION; BOUNDS;
D O I
10.1051/m2an/2015066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: (i) a low order VEM space whose basis functions, which are associated to the mesh vertices, are not explicitly computed in the element interiors; (ii) a proper local projection operator onto the plane wave space; (iii) an approximate stabilization term. A convergence result for the h-version of the method is proved, and numerical results testing its performance on general polygonal meshes are presented.
引用
收藏
页码:783 / 808
页数:26
相关论文
共 50 条
  • [21] A virtual element method for the acoustic vibration problem
    Beirao da Veiga, Lourenco
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    NUMERISCHE MATHEMATIK, 2017, 136 (03) : 725 - 763
  • [22] Virtual element method for simplified friction problem
    Wang, Fei
    Wei, Huayi
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 125 - 131
  • [23] A virtual element method for the acoustic vibration problem
    Lourenço Beirão da Veiga
    David Mora
    Gonzalo Rivera
    Rodolfo Rodríguez
    Numerische Mathematik, 2017, 136 : 725 - 763
  • [24] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [25] Error estimates of the DtN finite element method for the exterior Helmholtz problem
    Koyama, Daisuke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 21 - 31
  • [26] The plane wave method for inverse problems associated with Helmholtz-type equations
    Jin, Bangti
    Marin, Liviu
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2008, 32 (03) : 223 - 240
  • [27] A normalized plane-wave method for 2D Helmholtz problems
    Bogaert, I
    Pissoort, D
    Olyslager, F
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (02) : 237 - 243
  • [28] Stabilization-free virtual element method for plane elasticity
    Chen, Alvin
    Sukumar, N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 138 : 88 - 105
  • [29] A stress/displacement Virtual Element method for plane elasticity problems
    Artioli, E.
    de Miranda, S.
    Lovadina, C.
    Patruno, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 : 155 - 174
  • [30] A dual hybrid virtual element method for plane elasticity problems
    Artioli, Edoardo
    de Miranda, Stefano
    Lovadina, Carlo
    Patruno, Luca
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (05): : 1725 - 1750