Scaling laws in two-dimensional turbulent convection

被引:12
|
作者
Biskamp, D [1 ]
Hallatschek, K [1 ]
Schwarz, E [1 ]
机构
[1] Max Planck Inst Plasma Phys, Ctr Interdisciplinary Plasma Sci, D-85748 Garching, Germany
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 04期
关键词
D O I
10.1103/PhysRevE.63.045302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two-dimensional homogeneous turbulent convection is studied numerically. Though Bolgiano-Obukhov scaling is approximately valid, strong differences exist in the intermittency properties of velocity and temperature increments, where the latter are similar to those of a passive scalar. The main difference of the small-scale dynamics compared to a passive scalar arises from the Kelvin-Helmholtz instability, but this process does not affect the scaling properties. A condition for a scalar field to show the ramp-and-cliff structures of a passive scalar is discussed.
引用
收藏
页码:453021 / 453024
页数:4
相关论文
共 50 条
  • [21] Universal scaling laws of diffusion in two-dimensional granular liquids
    Wang, Chen-Hung
    Yu, Szu-Hsuan
    Chen, Peilong
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [22] Bolgiano-Obukhov scaling in two-dimensional isotropic convection
    Xie, Jin-Han
    Huang, Shi-Di
    Journal of Fluid Mechanics, 2022, 942
  • [23] Bolgiano-Obukhov scaling in two-dimensional isotropic convection
    Xie, Jin-Han
    Huang, Shi-Di
    JOURNAL OF FLUID MECHANICS, 2022, 942
  • [24] Two-Dimensional Steady Boussinesq Convection: Existence, Computation and Scaling
    Lane, Jeremiah S.
    Akers, Benjamin F.
    FLUIDS, 2021, 6 (12)
  • [26] Turbulent relative dispersion in two-dimensional free convection turbulence
    Ogasawara, Takeshi
    Toh, Sadayoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (10)
  • [27] Scaling mean velocity in two-dimensional turbulent wall jets
    Gupta, Abhishek
    Choudhary, Harish
    Singh, A. K.
    Prabhakaran, Thara
    Dixit, Shivsai Ajit
    JOURNAL OF FLUID MECHANICS, 2020, 891
  • [28] On scaling laws in turbulent magnetohydrodynamic Rayleigh-Benard convection
    Chakraborty, Sagar
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (24) : 3233 - 3236
  • [29] Scaling laws in the central region of confined turbulent thermal convection
    Ching, Emily S. C.
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [30] Vortex clustering and universal scaling laws in two-dimensional quantum turbulence
    Skaugen, Audun
    Angheluta, Luiza
    PHYSICAL REVIEW E, 2016, 93 (03)