Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation

被引:7
|
作者
Li, Lin [1 ]
Heidarkhani, Shapour [2 ]
机构
[1] Sichuan Univ Sci & Engn, Dept Sci, Zigong 643000, Peoples R China
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
three solutions; critical point; multiplicity results; Navier problem; CRITICAL-POINTS THEOREM; ELLIPTIC-SYSTEMS; MULTIPLICITY;
D O I
10.4064/ap104-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem {Delta(vertical bar Delta u vertical bar(p-2)Delta u) - div(vertical bar del u vertical bar(p-2)del u) = lambda f(x,u) + mu g(x,u) in ohm, u = Delta u = 0 on partial derivative ohm where ohm C R-N (N >= 1) is a non-empty bounded open set with a sufficiently smooth boundary partial derivative ohm, lambda > 0, mu > 0 and f, g : ohm x R -> R are two L-1 -Caratheodory functions.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条