Common non-trivial invariant closed cones for commuting contractions

被引:1
|
作者
Valles, A. Fernandez [1 ]
机构
[1] Univ Cadiz, Dept Math, Puerto Real 11510, Spain
关键词
common invariant closed cones; N-tuples of operators;
D O I
10.1016/j.laa.2008.01.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T = (T-1,..., T-N) be a system of N commuting contractions defined on a infinite dimensional separable Hilbert space H. In this article, we will prove that if (1,..., 1) epsilon sigma H-e(T) boolean AND T-N, where sigma H-e(T) denotes the essential Harte spectrum of T and T-N the unit politorus, respectively, then there exists a nontrivial cone C invariant for each contraction T-j; j epsilon {1,..., N}. This result complements recent results of Tsatsomeros and co-workers [Roderick Edwards, Judith J. McDonald, Michael J. Tsatsomeros, On matrices with common invariant cones with applications in neural and gene networks, Linear Algebra Appl. 398 (2005) 37-67; Michael Tsatsomeros, A criterion for the existence of common invariant subspaces of matrices, Linear Algebra Appl. 322 (1-3) (2001) 51-59]. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:2955 / 2960
页数:6
相关论文
共 50 条
  • [41] The non-trivial functions of sleep
    Rattenborg, Niels C.
    Lesku, John A.
    Martinez-Gonzalez, Dolores
    Lima, Steven L.
    SLEEP MEDICINE REVIEWS, 2007, 11 (05) : 405 - 409
  • [42] Non-trivial copies of N
    Dow, Alan
    TOPOLOGY AND ITS APPLICATIONS, 2024, 355
  • [43] SOME NON-TRIVIAL COCYCLES
    CHOJNACKI, W
    JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (01) : 9 - 31
  • [44] Infinite matrices with "few" non-zero entries and without non-trivial invariant subspaces
    Sirotkin, Gleb
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (06) : 1865 - 1874
  • [46] Classification of topological trivial matter with non-trivial defects
    Tsui, Lokman
    Li, Zi-Xiang
    Huang, Yen-Ta
    Louie, Steven G.
    Lee, Dung-Hai
    SCIENCE BULLETIN, 2019, 64 (09) : 575 - 579
  • [47] On trivial and non-trivial n-homogeneousC* algebras
    Anatoly Antonevich
    Naum Krupnik
    Integral Equations and Operator Theory, 2000, 38 : 172 - 189
  • [48] Classification of topological trivial matter with non-trivial defects
    Lokman Tsui
    Zi-Xiang Li
    Yen-Ta Huang
    Steven G. Louie
    Dung-Hai Lee
    Science Bulletin, 2019, 64 (09) : 575 - 579
  • [49] Sleep and wakefulness, trivial and non-trivial:: Which is which?
    Rial, Ruben V.
    Nicolau, Maria C.
    Gamundi, Antoni
    Akaarir, Mourad
    Aparicio, Sara
    Garau, Celia
    Tejada, Silvia
    Roca, Catalina
    Gene, Lluis
    Moranta, David
    Esteban, Susana
    SLEEP MEDICINE REVIEWS, 2007, 11 (05) : 411 - 417
  • [50] Trivial and Non-Trivial Supramolecular Assemblies Based on Nafion
    Kelarakis, Antonios
    Krysmann, Marta J.
    COLLOID AND INTERFACE SCIENCE COMMUNICATIONS, 2014, 1 : 31 - 34