Common non-trivial invariant closed cones for commuting contractions

被引:1
|
作者
Valles, A. Fernandez [1 ]
机构
[1] Univ Cadiz, Dept Math, Puerto Real 11510, Spain
关键词
common invariant closed cones; N-tuples of operators;
D O I
10.1016/j.laa.2008.01.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T = (T-1,..., T-N) be a system of N commuting contractions defined on a infinite dimensional separable Hilbert space H. In this article, we will prove that if (1,..., 1) epsilon sigma H-e(T) boolean AND T-N, where sigma H-e(T) denotes the essential Harte spectrum of T and T-N the unit politorus, respectively, then there exists a nontrivial cone C invariant for each contraction T-j; j epsilon {1,..., N}. This result complements recent results of Tsatsomeros and co-workers [Roderick Edwards, Judith J. McDonald, Michael J. Tsatsomeros, On matrices with common invariant cones with applications in neural and gene networks, Linear Algebra Appl. 398 (2005) 37-67; Michael Tsatsomeros, A criterion for the existence of common invariant subspaces of matrices, Linear Algebra Appl. 322 (1-3) (2001) 51-59]. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:2955 / 2960
页数:6
相关论文
共 50 条
  • [1] Operators with a non-trivial closed invariant affine subspace
    Bracic, Janko
    AEQUATIONES MATHEMATICAE, 2024, 98 (05) : 1305 - 1315
  • [2] Contractions without non-trivial invariant subspaces satisfying a positivity condition
    Duggal, Bhaggy
    Jeon, In Ho
    Kim, In Hyoun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [3] Contractions without non-trivial invariant subspaces satisfying a positivity condition
    Bhaggy Duggal
    In Ho Jeon
    In Hyoun Kim
    Journal of Inequalities and Applications, 2016
  • [4] Convex analysis and non-trivial invariant subspaces
    Godefroy, Gilles
    POSITIVITY, 2020, 24 (02) : 369 - 372
  • [5] Convex analysis and non-trivial invariant subspaces
    Gilles Godefroy
    Positivity, 2020, 24 : 369 - 372
  • [6] On common invariant subspaces for commuting contractions with rich spectrum
    Kosiek, M
    Octavio, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (03) : 823 - 844
  • [7] New criteria for the existence of non-trivial fixed points in cones
    Alberto Cabada
    José Ángel Cid
    Gennaro Infante
    Fixed Point Theory and Applications, 2013
  • [8] New criteria for the existence of non-trivial fixed points in cones
    Cabada, Alberto
    Angel Cid, Jose
    Infante, Gennaro
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [9] Operators having no non-trivial closed invariant subspaces on l1: a step further
    Gallardo-Gutierrez, Eva A.
    Read, Charles
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (03) : 649 - 674
  • [10] Endomorphisms for non-trivial non-linear loop invariant generation
    Rebiha, Rachid
    Matringe, Nadir
    Moura, Arnaldo Vieira
    THEORETICAL ASPECTS OF COMPUTING - ICTAC 2008, PROCEEDINGS, 2008, 5160 : 425 - +