Deep-learned short tau inversion recovery imaging using multi-contrast MR images

被引:13
|
作者
Kim, Sewon [1 ]
Jang, Hanbyol [1 ]
Jang, Jinscong [1 ]
Lee, Young Han [2 ,3 ]
Hwang, Dosik [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Yonsei Univ, Dept Radiol, Coll Med, Seoul, South Korea
[3] Yonsei Univ, Ctr Clin Imaging Data Sci CCIDS, Coll Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
deep learning; image synthesis; knee; magnetic resonance imaging; neural network; short tau inversion recovery; short-TI inversion recovery; ANTERIOR CRUCIATE LIGAMENT; ARTICULAR-CARTILAGE; KNEE; TEARS; ARTHROSCOPY; DIAGNOSIS;
D O I
10.1002/mrm.28327
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To generate short tau, or short inversion time (TI), inversion recovery (STIR) images from three multi-contrast MR images, without additional scanning, using a deep neural network. Methods For simulation studies, we used multi-contrast simulation images. For in-vivo studies, we acquired knee MR images including 288 slices of T-1-weighted (T-1-w), T-2-weighted (T-2-w), gradient-recalled echo (GRE), and STIR images taken from 12 healthy volunteers. Our MR image synthesis method generates a new contrast MR image from multi-contrast MR images. We used a deep neural network to identify the complex relationships between MR images that show various contrasts for the same tissues. Our contrast-conversion deep neural network (CC-DNN) is an end-to-end architecture that trains the model to create one image from three (T-1-w, T-2-w, and GRE images). We propose a new loss function to take into account intensity differences, misregistration, and local intensity variations. The CC-DNN-generated STIR images were evaluated with four quantitative evaluation metrics, including mean squared error, peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and multi-scale SSIM (MS-SSIM). Furthermore, a subjective evaluation was performed by musculoskeletal radiologists. Results Our method showed improved results in all quantitative evaluations compared with other methods and received the highest scores in subjective evaluations by musculoskeletal radiologists. Conclusion This study suggests the feasibility of our method for generating STIR sequence images without additional scanning that offered a potential alternative to the STIR pulse sequence when additional scanning is limited or STIR artifacts are severe.
引用
收藏
页码:2994 / 3008
页数:15
相关论文
共 50 条
  • [21] Unpaired Multi-contrast MR Image Synthesis Using Generative Adversarial Networks
    Sohail, Muhammad
    Riaz, Muhammad Naveed
    Wu, Jing
    Long, Chengnian
    Li, Shaoyuan
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2019, 2019, 11827 : 22 - 31
  • [22] Orbital pseudotumors: Value of short inversion time inversion-recovery MR imaging
    Asao, C
    Korogi, Y
    Hotta, A
    Shimomura, O
    Kitajima, M
    Negi, A
    Takahashi, M
    RADIOLOGY, 1997, 202 (01) : 55 - 59
  • [23] On the regularization of feature fusion and mapping for fast MR multi-contrast imaging via iterative networks
    Liu, Xinwen
    Wang, Jing
    Sun, Hongfu
    Chandra, Shekhar S.
    Crozier, Stuart
    Liu, Feng
    MAGNETIC RESONANCE IMAGING, 2021, 77 : 159 - 168
  • [24] Multi-contrast MR imaging at 7T in multiple sclerosis: highest lesion detection in cortical grey matter with 3D fluid-attenuated inversion recovery
    Kilsdonk, I. D.
    de Graaf, W. L.
    Soriano, A. Lopez
    Zwanenburg, J. J.
    Visser, F.
    Kuijer, J. P. A.
    Geurts, J. J. G.
    Pouwels, P. J. W.
    Polman, C. H.
    Castelijns, J. A.
    Luijten, P. R.
    Barkhof, F.
    Wattjes, M. P.
    MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 9 - 9
  • [25] Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies
    Zhang, Kunlei
    Lu, Wenmiao
    Marziliano, Pina
    MAGNETIC RESONANCE IMAGING, 2013, 31 (10) : 1731 - 1743
  • [26] Predicting FDG-PET Images From Multi-Contrast MRI Using Deep Learning in Patients With Brain Neoplasms
    Ouyang, Jiahong
    Chen, Kevin T. T.
    Armindo, Rui Duarte
    Davidzon, Guido Alejandro
    Hawk, Kristina Elizabeth
    Moradi, Farshad
    Rosenberg, Jarrett
    Lan, Ella
    Zhang, Helena
    Zaharchuk, Greg
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (03) : 1010 - 1020
  • [27] Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: Comparison of imaging with the short tau inversion recovery method and the chemical shift selective method
    Shimizu, Hironori
    Isoda, Hiroyoshi
    Ohno, Tsuyoshi
    Yamashita, Rikiya
    Kawahara, Seiya
    Furuta, Akihiro
    Fujimoto, Koji
    Kido, Aki
    Kusahara, Hiroshi
    Togashi, Kaori
    MAGNETIC RESONANCE IMAGING, 2015, 33 (01) : 81 - 85
  • [28] Short tau inversion recovery magnetic resonance imaging for staging and screening in myxoid liposarcoma
    Chien, Alexander
    Zuppan, Craig W.
    Lei, Li
    Williams, Nadine L.
    Shields, Troy G.
    Elsissy, Joseph G.
    Pham, Peter
    Zuckerman, Lee M.
    JOURNAL OF ORTHOPAEDICS, 2019, 16 (03) : 206 - 210
  • [29] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Moraal, Bastiaan
    Roosendaal, Stefan D.
    Pouwels, Petra J. W.
    Vrenken, Hugo
    van Schijndel, Ronald A.
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    NEURORADIOLOGY JOURNAL, 2009, 22 : 33 - 42
  • [30] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Bastiaan Moraal
    Stefan D. Roosendaal
    Petra J. W. Pouwels
    Hugo Vrenken
    Ronald A. van Schijndel
    Dominik S. Meier
    Charles R. G. Guttmann
    Jeroen J. G. Geurts
    Frederik Barkhof
    European Radiology, 2008, 18