Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries

被引:34
|
作者
Liu, Yanyi [1 ]
Liu, Dawei [1 ]
Zhang, Qifeng [1 ]
Cao, Guozhong [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
ELECTROSTATIC SPRAY DEPOSITION; LI+-INTERCALATION PROPERTIES; DIOXIDE NANOWALL ARRAYS; VANADIA GEL SYNTHESIS; ELECTROCHEMICAL PROPERTIES; MANGANESE-DIOXIDE; ENERGY-STORAGE; THIN-FILMS; PEROXOVANADATE PRECURSORS; POSITIVE-ELECTRODE;
D O I
10.1039/c0jm04240d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Boosted by the rapid advances of science and technology in the field of energy materials, Li-ion batteries have achieved significant progress in energy storage performance since their commercial debut in 1991. The development of nanostructured electrode material is regarded as one of the key potentials for the further advancement in Li-ion batteries. This feature article summarizes our recent efforts in the synthesis and characterization of nanostructured electrode materials for high-performance Li-ion batteries. The electrode materials include manganese oxide nanowall arrays, vanadium oxide nanofibers and films, vanadium oxide-carbon nanocomposites, lithium iron phosphate-carbon nanocomposite films, and titanium oxide nanotube arrays. Enhanced Li+ intercalation capacities, improved rate capabilities and better cyclic stability were achieved by constructing micro-or nanostructure, controlling materials crystallinity and introducing desired defects on the surface and/or in the bulk. The fabrication of binderless and additive-free nanostructured electrodes for Li-ion batteries via sol-gel processing is also highlighted.
引用
收藏
页码:9969 / 9983
页数:15
相关论文
共 50 条
  • [31] ZnO Nanocrystals as Anode Electrodes for Lithium-Ion Batteries
    Zhang, Wenhui
    Du, Lijuan
    Chen, Zongren
    Hong, Juan
    Yue, Lu
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [32] Assessment of the wettability of porous electrodes for lithium-ion batteries
    Wu, Mao-Sung
    Liao, Tzu-Ling
    Wang, Yung-Yun
    Wan, Chi-Chao
    Journal of Applied Electrochemistry, 2004, 34 (08): : 797 - 805
  • [33] Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries
    Mao-Sung Wu
    Tzu-Ling Liao
    Yung-Yun Wang
    Chi-Chao Wan
    Journal of Applied Electrochemistry, 2004, 34 : 797 - 805
  • [34] Fabrication and Characterization of Composite Electrodes for Lithium-ion Batteries
    Prosini, P. P.
    Cento, C.
    Masci, A.
    Carewska, M.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1654 - 1659
  • [35] Oxide materials as positive electrodes for lithium-ion batteries
    Makhonina, EV
    Pervov, VS
    Dubasova, VS
    USPEKHI KHIMII, 2004, 73 (10) : 1075 - 1087
  • [36] Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries
    Zhang, Xing-yu
    Chen, Hao-Sen
    Fang, Daining
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 169 (169)
  • [37] Evaluating the performance of nanostructured materials as lithium-ion battery electrodes
    Mark J. Armstrong
    Colm O’Dwyer
    William J. Macklin
    Justin. D. Holmes
    Nano Research, 2014, 7 : 1 - 62
  • [38] Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation
    Wang, Ying
    Takahashi, Katsunori
    Lee, Kyoungho
    Cao, Guozhong
    ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (09) : 1133 - 1144
  • [39] Evaluating the performance of nanostructured materials as lithium-ion battery electrodes
    Armstrong, Mark J.
    O'Dwyer, Colm
    Macklin, William J.
    Holmes, Justin. D.
    NANO RESEARCH, 2014, 7 (01) : 1 - 62
  • [40] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    SEMICONDUCTORS, 2016, 50 (02) : 276 - 283