SHAPE-enabled fragment-based ligand discovery for RNA

被引:25
|
作者
Zeller, Meredith J. [1 ]
Favorov, Oleg [2 ]
Li, Kelin [3 ]
Nuthanakanti, Ashok [4 ]
Hussein, Dina [5 ]
Michaud, Aureliane [5 ]
Lafontaine, Daniel A. [5 ]
Busan, Steven [1 ]
Serganov, Alexander [4 ]
Aube, Jeffrey [1 ,3 ]
Weeks, Kevin M. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Eshelman Sch Pharm, Div Chem Biol & Med Chem, Chapel Hill, NC 27599 USA
[4] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[5] Univ Sherbrooke, Fac Sci, Dept Biol, RNA Grp, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大健康研究院;
关键词
RNA-targeted ligand discovery; SHAPE-MaP; cooperativity; fragment linking; SELECTIVE 2'-HYDROXYL ACYLATION; PRIMER EXTENSION; STRUCTURAL BASIS; DRUG DISCOVERY; NONCODING RNAS; BINDING; TRANSCRIPTION; RIBOSWITCHES; INHIBITORS; MAP;
D O I
10.1073/pnas.2122660119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transcriptome represents an attractive but underused set of targets for smallmolecule ligands. Here, we devise a technology that leverages fragment-based screening and SHAPE-MaP RNA structure probing to discover small-molecule fragments that bind an RNA structure of interest. We identified fragments and cooperatively binding fragment pairs that bind to the thiamine pyrophosphate (TPP) riboswitch with millimolar to micromolar affinities. We then used structure-activity relationship information to efficiently design a linked-fragment ligand, with no resemblance to the native ligand, with high ligand efficiency and druglikeness, that binds to the TPP thiM riboswitch with high nanomolar affinity and that modulates RNA conformation during cotranscriptional folding. Principles from this work are broadly applicable, leveraging cooperativity and multisite binding, for developing high-quality ligands for diverse RNA targets.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Fragment-Based Lead Discovery and Design
    Joseph-McCarthy, Diane
    Campbell, Arthur J.
    Kern, Gunther
    Moustakas, Demetri
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (03) : 693 - 704
  • [32] Experiences in fragment-based drug discovery
    Murray, Christopher W.
    Verdonk, Marcel L.
    Rees, David C.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2012, 33 (05) : 224 - 232
  • [33] Expanding the Druggable Proteome: Ligand and Target Discovery by Fragment-Based Screening in Cells
    Parker, Christopher G.
    FASEB JOURNAL, 2018, 32 (01):
  • [34] The rise of fragment-based drug discovery
    Murray, Christopher W.
    Rees, David C.
    NATURE CHEMISTRY, 2009, 1 (03) : 187 - 192
  • [35] EXPERIENCES IN FRAGMENT-BASED LEAD DISCOVERY
    Hubbard, Roderick E.
    Murray, James B.
    FRAGMENT-BASED DRUG DESIGN: TOOLS, PRACTICAL APPROACHES, AND EXAMPLES, 2011, 493 : 509 - 531
  • [36] Introduction to Fragment-Based Drug Discovery
    Erlanson, Daniel A.
    FRAGMENT-BASED DRUG DISCOVERY AND X-RAY CRYSTALLOGRAPHY, 2012, 317 : 1 - 32
  • [37] Fragment-based screening of ligand databases
    Lemmen, C
    Lengauer, T
    MOLECULAR MODELING AND PREDICTION OF BIOACTIVITY, 2000, : 169 - 174
  • [38] The rise of fragment-based drug discovery
    Murray C.W.
    Rees D.C.
    Nature Chemistry, 2009, 1 (3) : 187 - 192
  • [39] Deconstructing fragment-based inhibitor discovery
    Kerim Babaoglu
    Brian K Shoichet
    Nature Chemical Biology, 2006, 2 : 720 - 723
  • [40] Tethering: Fragment-based drug discovery
    Erlanson, DA
    Wells, JA
    Braisted, AC
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2004, 33 : 199 - 223