Multifractality-monofractality phase transition in the Anderson model

被引:0
|
作者
Bershadskii, A
机构
[1] Ramat-Aviv 61398, Tel-Aviv
来源
MODERN PHYSICS LETTERS B | 1998年 / 12卷 / 22期
关键词
D O I
10.1142/S0217984998001062
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is shown that statistics of multifractality-monofractality phase transition is described by a generalization of the Bernoulli distribution (multifractal Bernoulli distribution). It is also shown that this distribution is observed in numerical simulations of multifractal wave functions which use the Anderson model, both for short- and long-range disorder. In the last case (corresponding to the dipole interactions) the multifractal specific heat of the most eigenstates - c similar or equal to d/3, where d is dimension of the space.
引用
收藏
页码:921 / 927
页数:7
相关论文
共 50 条
  • [31] Topological quantum phase transition between Fermi liquid phases in an Anderson impurity model
    Blesio, G. G.
    Manuel, L. O.
    Roura-Bas, P.
    Aligia, A. A.
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [32] Multifractality and quantum-to-classical crossover in the Coulomb anomaly at the Mott-Anderson metal-insulator transition
    Amini, M.
    Kravtsov, V. E.
    Mueller, M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [33] ANDERSON TRANSITION AND NONLINEAR SIGMA-MODEL
    WEGNER, F
    LECTURE NOTES IN PHYSICS, 1985, 216 : 141 - 150
  • [34] ANDERSON TRANSITION AND NONLINEAR SIGMA-MODEL
    WEGNER, F
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 283 - 283
  • [35] Valence transition in the extended Anderson lattice model
    Romano, A
    Noce, C
    Citro, R
    SOLID STATE COMMUNICATIONS, 1997, 104 (10) : 623 - 627
  • [36] Valence transition in the extended Anderson lattice model
    Unità I.N.F.M. di Salerno, Dipto. Sci. Fisiche E.R. Caianiello, Università di Salerno, I-84081 Baronissi , Italy
    不详
    不详
    Solid State Commun, 10 (623-627):
  • [37] ANDERSON TRANSITION AND NONLINEAR SIGMA-MODEL
    WEGNER, F
    LECTURE NOTES IN PHYSICS, 1984, 201 : 454 - 462
  • [38] Localization transition in random Levy matrices: multifractality of eigenvectors in the localized phase and at criticality
    Monthus, Cecile
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [39] Phase diagram for the Anderson lattice model
    Bernhard, BH
    Lacroix, C
    Iglesias, JR
    Coqblin, B
    PHYSICAL REVIEW B, 2000, 61 (01): : 441 - 446
  • [40] Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson symmetry classes in three dimensions
    Ujfalusi, Laszlo
    Varga, Imre
    PHYSICAL REVIEW B, 2015, 91 (18)