Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel

被引:21
|
作者
Coronel-Escamilla, Antonio [1 ]
Francisco Gomez-Aguilar, Jose [2 ]
Baleanu, Dumitru [3 ,4 ]
Fabricio Escobar-Jimenez, Ricardo [1 ]
Hugo Olivares-Peregrino, Victor [1 ]
Abundez-Pliego, Arturo [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey
[4] Inst Space Sci, POB MG-23, Magurele 76900, Romania
关键词
Pais-Uhlenbeck oscillator; two-electric pendulum; Caputo-Fabrizio operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme; Euler-Lagrange formalism; MODEL; DERIVATIVES; FORMALISM;
D O I
10.1186/s13662-016-1001-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of gamma.
引用
收藏
页数:17
相关论文
共 50 条