Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel

被引:21
|
作者
Coronel-Escamilla, Antonio [1 ]
Francisco Gomez-Aguilar, Jose [2 ]
Baleanu, Dumitru [3 ,4 ]
Fabricio Escobar-Jimenez, Ricardo [1 ]
Hugo Olivares-Peregrino, Victor [1 ]
Abundez-Pliego, Arturo [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACYT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey
[4] Inst Space Sci, POB MG-23, Magurele 76900, Romania
关键词
Pais-Uhlenbeck oscillator; two-electric pendulum; Caputo-Fabrizio operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme; Euler-Lagrange formalism; MODEL; DERIVATIVES; FORMALISM;
D O I
10.1186/s13662-016-1001-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of gamma.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel
    Antonio Coronel-Escamilla
    José Francisco Gómez-Aguilar
    Dumitru Baleanu
    Ricardo Fabricio Escobar-Jiménez
    Victor Hugo Olivares-Peregrino
    Arturo Abundez-Pliego
    Advances in Difference Equations, 2016
  • [2] Formulation of Euler-Lagrange equations for fractional variational problems
    Agrawal, OP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 368 - 379
  • [3] On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative
    Baleanu, Dumitru
    Muslih, Sami I.
    Rabei, Eqab M.
    NONLINEAR DYNAMICS, 2008, 53 (1-2) : 67 - 74
  • [4] Fractional Euler-Lagrange and fractional Hamilton equations for super symmetric classical model
    Baleanu, Dumitru
    Muslih, Sami I.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (04) : 379 - 383
  • [5] Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 385 - 391
  • [6] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [7] Formulation of Euler-Lagrange Equations for Multidelay Fractional Optimal Control Problems
    Effati, Sohrab
    Rakhshan, Seyed Ali
    Saqi, Samane
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (06):
  • [8] A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives
    Baleanu, Dumitru
    Trujillo, Juan I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) : 1111 - 1115
  • [9] Fractional Euler-Lagrange equations of motion in fractional space
    Muslih, Sami I.
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1209 - 1216
  • [10] Variational integrator for fractional Euler-Lagrange equations
    Bourdin, Loic
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    APPLIED NUMERICAL MATHEMATICS, 2013, 71 : 14 - 23