Electrical pulse measurement, inelastic relaxation, and non-equilibrium transport in a quantum dot

被引:51
|
作者
Fujisawa, T
Austing, DG
Tokura, Y
Hirayama, Y
Tarucha, S
机构
[1] NTT Corp, Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[2] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
[3] CREST, Kawaguchi 3310012, Japan
[4] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan
[5] ERATO, Mesoscop Correlat Project, Atsugi, Kanagawa 2430198, Japan
关键词
D O I
10.1088/0953-8984/15/33/201
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review electrical pulse experiments carried out to probe inelastic energy relaxation processes and related non-equilibrium transport characteristics of quantum dots (QDs) in the Coulomb blockade (CB) regime. In contrast to the relatively short momentum relaxation time (similar to10 ns) that can be understood on the basis of acoustic phonon emission, the spin-flip relaxation time is found to be extremely long (similar to200 mus). The spin relaxation process in our QDs is actually dominated by a cotunnelling process, and thus the intrinsic spin relaxation should have a longer relaxation time. The long relaxation time is discussed in terms of potential applications to spin-based quantum information Storage. On the other hand, the extremely long spin relaxation process can induce considerable fluctuation of the spin, charge, and total energy of the QD. The absence of efficient spin relaxation processes can cause highly non-equilibrium transport, which actually 'breaks down' the single-electron tunnelling scheme. The non-equilibrium effects must be considered when electrons and spins are manipulated in the CB regime.
引用
收藏
页码:R1395 / R1428
页数:34
相关论文
共 50 条
  • [31] Quantum non-equilibrium and relaxation to equilibrium for a class of de Broglie-Bohm-type theories
    Colin, Samuel
    Struyve, Ward
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [32] Electron Transport in T-Shaped Double Quantum Dot System Using Non-Equilibrium Green's Function
    Haroon
    Ahsan, M. A. H.
    ADVANCED SCIENCE LETTERS, 2014, 20 (7-9) : 1281 - 1286
  • [33] Inelastic strain relaxation in the Ge quantum dot array
    Talochkin, A. B.
    Markov, V. A.
    Mashanov, V. I.
    APPLIED PHYSICS LETTERS, 2007, 91 (09)
  • [34] Non-Equilibrium Quantum Transport of Chiral Fluids from Kinetic Theory
    Hidaka, Yoshimasa
    Pu, Shi
    Yang, Di-Lun
    NUCLEAR PHYSICS A, 2019, 982 : 547 - 550
  • [35] Simulated Quantum Computation of Non-Equilibrium Charge Transport in a Cyclic Molecule
    Syurakshin, A. V.
    Saleev, V. A.
    Yushankhai, V. Yu.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (04) : 607 - 610
  • [36] Magnetic focusing with quantum point contacts in the non-equilibrium transport regime
    Chen, T. -M.
    Pepper, M.
    Farrer, I.
    Ritchie, D. A.
    Jones, G. A. C.
    APPLIED PHYSICS LETTERS, 2013, 103 (09)
  • [37] Non-equilibrium Kondo effect in electronic transport through quantum dots
    Swirkowicz, R
    Wilczynski, M
    Barnas, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : D615 - D618
  • [38] RELAXATION OF EMISSION AND NON-EQUILIBRIUM POPULATION IN QUANTUM-DIMENSIONAL SEMICONDUCTING LASERS
    AVERKIEV, NS
    IMENKOV, AN
    LITVAK, AM
    YAKOVLEV, YP
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1989, 15 (03): : 79 - 83
  • [39] Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation
    Piper, I. M.
    Eastham, P. R.
    Ediger, M.
    Wilson, A. M.
    Wu, Y.
    Hugues, M.
    Hopkinson, M.
    Phillips, R. T.
    QUANTUM DOTS 2010, 2010, 245
  • [40] Local non-equilibrium transport models
    Sobolev, SL
    USPEKHI FIZICHESKIKH NAUK, 1997, 167 (10): : 1095 - 1106