Our objective in this series of two articles, of which the present article is the first, is to give a Perrin-Riou-style construction of p-adic L-functions (of Bellaiche and Stevens) over the eigencurve. As the first ingredient, we interpolate the Beilinson-Kato elements over the eigencurve (including the neighborhoods of theta-critical points). Along the way, we prove etale variants of Bellaiche's results describing the local properties of the eigencurve. We also develop the local framework to construct and establish the interpolative properties of these p-adic L-functions away from theta-critical points.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Dohyeong
Kim, Minhyong
论文数: 0引用数: 0
h-index: 0
机构:
Int Ctr Math Sci, 47 Potterrow, Edinburgh EH8 9BT, Scotland
Korea Inst Adv Study, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Minhyong
Park, Jeehoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Park, Jeehoon
Yoo, Hwajong
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Seoul Natl Univ, Coll Liberal Studies, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350108, Peoples R China
Fujian Normal Univ, FJKLMAA, Fuzhou 350108, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350108, Peoples R China