Interpolation of Beilinson-Kato elements and p-adic L-functions

被引:3
|
作者
Benois, Denis [1 ]
Buyukboduk, Kazim [2 ]
机构
[1] Univ Bordeaux, Inst Math, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Coll, UCD Sch Math & Stat, Dublin, Ireland
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2022年 / 46卷 / 02期
关键词
Eigencurve; theta-criticality; Triangulations; Beilinson-Kato elements; p-adic L-functions; IWASAWA THEORY; EISENSTEIN COHOMOLOGY; EULER PRODUCTS; MODULAR-FORMS; REPRESENTATIONS; (PHI; CLASSIFICATION; GAMMA)-MODULES; FAMILIES; VALUES;
D O I
10.1007/s40316-021-00172-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our objective in this series of two articles, of which the present article is the first, is to give a Perrin-Riou-style construction of p-adic L-functions (of Bellaiche and Stevens) over the eigencurve. As the first ingredient, we interpolate the Beilinson-Kato elements over the eigencurve (including the neighborhoods of theta-critical points). Along the way, we prove etale variants of Bellaiche's results describing the local properties of the eigencurve. We also develop the local framework to construct and establish the interpolative properties of these p-adic L-functions away from theta-critical points.
引用
收藏
页码:231 / 287
页数:57
相关论文
共 50 条