A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand

被引:3
|
作者
Mariconda, C [1 ]
Treu, G [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
Lipschitz; regularity; non-coercive; discontinuous; calculus of variations;
D O I
10.1051/cocv:2004004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let L : RN x RN. R be a Borelian function and consider the following problems inf {F(y) = integral(b)(a) L(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) = A, y(b) = B} (P) inf {F**(y) = integral(b)(a) L**(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) - A, y(b) = B}, (P**) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F** if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P) when L is not superlinear.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 25 条