Simulating long-distance entanglement in quantum spin chains by superconducting flux qubits

被引:14
|
作者
Zippilli, Stefano [1 ,2 ,3 ]
Grajcar, Miroslav [4 ,5 ]
Il'ichev, Evgeni [6 ,7 ]
Illuminati, Fabrizio [1 ,8 ]
机构
[1] Univ Salerno, Dipartimento Ingn Ind, I-84084 Fisciano, SA, Italy
[2] Univ Camerino, Div Phys, Sch Sci & Technol, I-62032 Camerino, MC, Italy
[3] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy
[4] Comenius Univ, Dept Expt Phys, SK-84248 Bratislava, Slovakia
[5] Slovak Acad Sci, Inst Phys, Bratislava, Slovakia
[6] Leibniz Inst Photon Technol, D-07702 Jena, Germany
[7] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia
[8] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, I-84084 Fisciano, SA, Italy
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 02期
关键词
PHYSICS; NOISE;
D O I
10.1103/PhysRevA.91.022315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long-distance entanglement (LDE), namely, a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditions. As such, LDE can be considered an elementary precursor of edge modes and topological order. We discuss two possible implementations which simulate open chains with uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases, we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring LDE. In the first case, the adiabatic manipulation and the Ising interactions are realized using dc currents, while in the second case microwaves fields are used to control the smoothness of the transformation and to realize the effective XX interactions. We demonstrate the adiabatic preparation of the end-to-end entanglement in chains of four qubits with realistic parameters and on a relatively fast time scale.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Long-distance coupling of spin qubits via topological magnons
    Hetényi, Bence
    Mook, Alexander
    Klinovaja, Jelena
    Loss, Daniel
    [J]. Physical Review B, 2022, 106 (23)
  • [22] Entanglement and Bell states in superconducting flux qubits
    Kim, Mun Dae
    Cho, Sam Young
    [J]. PHYSICAL REVIEW B, 2007, 75 (13)
  • [23] Adiabatic quantum simulation with a segmented ion trap: Application to long-distance entanglement in quantum spin systems
    Zippilli, S.
    Johanning, M.
    Giampaolo, S. M.
    Wunderlich, Ch.
    Illuminati, F.
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [24] Solid-state spin qubits unlock applications in nanoscale quantum sensing and are at the forefront of creating distributed, long-distance entanglement that could enable a quantum internet
    Anderson, Christopher
    Awschalom, David
    [J]. PHYSICS TODAY, 2023, 76 (08) : 27 - 33
  • [25] Remote Entanglement of Superconducting Qubits via Solid-State Spin Quantum
    Kurokawa, Hodaka
    Yamamoto, Moyuki
    Sekiguchi, Yuhei
    Kosaka, Hideo
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [26] Elementary quantum gates between long-distance qubits mediated by a resonator
    Li, Ming-Cui
    Chen, Ai-Xi
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (10)
  • [27] Long-distance entanglement-based quantum key distribution
    Ribordy, Greágoire
    Brendel, Jürgen
    Gautier, Jean-Daniel
    Gisin, Nicolas
    Zbinden, Hugo
    [J]. 2001, American Inst of Physics, Woodbury (63):
  • [28] Continuous Variable Entanglement Distribution for Long-Distance Quantum Communication
    Zhao Jun-Jun
    Guo Xiao-Min
    Wang Xu-Yang
    Wang Ning
    Li Yong-Min
    Peng Kun-Chi
    [J]. CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [29] REALIZATION OF FAST QUANTUM INFORMATION TRANSFER AND ENTANGLEMENT WITH SUPERCONDUCTING FLUX QUBITS COUPLED TO A RESONATOR
    Wang, Yawei
    Gao, Shaoyan
    Fang, Aiping
    Li, Pengbo
    Li, Fuli
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (04)
  • [30] Elementary quantum gates between long-distance qubits mediated by a resonator
    Ming-Cui Li
    Ai-Xi Chen
    [J]. Quantum Information Processing, 2020, 19