Steganalysis embedding percentage determination with Learning Vector Quantization

被引:4
|
作者
Rodriguez, Benjamin M. [1 ]
Peterson, Gilbert L. [1 ]
Bauer, Kenneth W. [1 ]
Agaian, Sos S. [2 ]
机构
[1] USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA
[2] Univ Texas San Antonio, San Antonio, TX 78249 USA
关键词
D O I
10.1109/ICSMC.2006.385001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steganography (stego) is used primarily when the very existence of a communication signal is to be kept covert. Detecting the presence of stego is a very difficult problem which is made even more difficult when the embedding technique is not known. This article presents an investigation of the process and necessary considerations inherent in the development of a new method applied for the detection of hidden data within digital images. We demonstrate the effectiveness of Learning Vector Quantization (LVQ) as a clustering technique which assists in discerning clean or non-stego images from anomalous or stego images. This comparison is conducted using 7 features [1] over a small set of 200 observations with varying levels of embedded information from 1% to 10% in increments of 1%. The results demonstrate that LVQ not only more accurately identify when an image contains LSB hidden information when compared to k-means or using just the raw feature sets, but also provides a simple method for determining the percentage of embedding given low information embedding percentages.
引用
收藏
页码:1861 / +
页数:2
相关论文
共 50 条
  • [21] Generalized relevance learning vector quantization
    Hammer, B
    Villmann, T
    NEURAL NETWORKS, 2002, 15 (8-9) : 1059 - 1068
  • [22] Learning vector quantization for multimodal data
    Hammer, B
    Strickert, M
    Villmann, T
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 370 - 376
  • [23] Robust vector quantization by competitive learning
    Buhmann, JM
    Hofmann, T
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 139 - 142
  • [24] sklvq: Scikit Learning Vector Quantization
    van Veen, Rick
    Biehl, Michael
    De Vries, Gert-Jan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [25] Noise Fuzzy Learning Vector Quantization
    Wu, Xiao-Hong
    Wu, Bin
    Zhao, Jie-Wen
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 367 - +
  • [26] Relational Extensions of Learning Vector Quantization
    Hammer, Barbara
    Schleif, Frank-Michael
    Zhu, Xibin
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 481 - 489
  • [27] EEG CLASSIFICATION BY LEARNING VECTOR QUANTIZATION
    FLOTZINGER, D
    KALCHER, J
    PFURTSCHELLER, G
    BIOMEDIZINISCHE TECHNIK, 1992, 37 (12): : 303 - 309
  • [28] Variants of recurrent learning vector quantization
    Ravichandran, Jensun
    Kaden, Marika
    Villmann, Thomas
    NEUROCOMPUTING, 2022, 502 : 27 - 36
  • [29] Dual Weight Learning Vector Quantization
    Lv, Chuanfeng
    An, Xing
    Liu, Zhiwen
    Zhao, Qiangfu
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1723 - +
  • [30] Learning algorithms with boosting for Vector Quantization
    Miyajima, Hiromi
    Shigei, Noritaka
    Maeda, Michiharu
    Hosoda, Shuji
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 352 - 356