Modular type-2 neuro-fuzzy systems

被引:0
|
作者
Starczewski, Janusz [1 ]
Scherer, Rafal [1 ]
Korytkowski, Marcin [1 ]
Nowicki, Robert [1 ]
机构
[1] Czestochowa Tech Univ, Dept Comp Engn, PL-42200 Czestochowa, Poland
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the paper we study a modular system which can be converted into a type-2 neuro-fuzzy system. The rule base of such system consists of triangular type-2 fuzzy sets. The modular structure is trained using the backpropagation method combined with the AdaBoost algorithm. By applying the type-2 neuro-fuzzy system, the modular structure is converted into a compressed form. This allows to overcome the training problem of type-2 neuro-fuzzy systems. An illustrative example is given to show the efficiency of our approach in the problems of classification.
引用
收藏
页码:570 / 578
页数:9
相关论文
共 50 条
  • [21] Interval type-2 neuro-fuzzy system with implication-based inference mechanism
    Siminski, Krzysztof
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 79 : 140 - 152
  • [22] Control and Identification of Dynamic Plants Using Adaptive Neuro-Fuzzy Type-2 Strategy
    Farid, U.
    Khan, B.
    Ullah, Z.
    Ali, S. M.
    Mehmood, C. A.
    Farid, S.
    Sajjad, R.
    Sami, I.
    Shah, A.
    2017 INTERNATIONAL CONFERENCE ON ENERGY CONSERVATION AND EFFICIENCY (ICECE), 2017, : 68 - 73
  • [23] Recurrent Interval Type-2 Neuro-Fuzzy Control of an Electro Hydraulic Servo System
    Khanesar, Mojtaba Ahmadieh
    Kaynak, Okyay
    2016 IEEE 14TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2016, : 593 - 600
  • [24] Design of Interval Type-2 Fuzzy Relation-Based Neuro-Fuzzy Networks for Nonlinear Process
    Lee, Dong-Yoon
    Park, Keon-Jun
    COMPUTER APPLICATIONS FOR SECURITY, CONTROL AND SYSTEM ENGINEERING, 2012, 339 : 336 - +
  • [25] An ensemble of logical-type neuro-fuzzy systems
    Scherer, Rafal
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 13115 - 13120
  • [26] Combining logical-type neuro-fuzzy systems
    Korytkowski, Marcin
    Nowicki, Robert
    Rutkowski, Leszek
    Scherer, Rafal
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 240 - 249
  • [27] Modular Neuro-Fuzzy Systems Based on Generalized Parametric Triangular Norms
    Korytkowski, Marcin
    Scherer, Rafal
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 332 - 339
  • [28] On Type-2 Fuzzy Sets and Type-2 Fuzzy Systems
    Shvedov A.S.
    Journal of Mathematical Sciences, 2021, 259 (3) : 376 - 384
  • [29] Performance Comparison of Type-1 and Type-2 Neuro-Fuzzy Controllers for a Flexible Joint Manipulator
    Jokandan, Afshar Shamsi
    Khosravi, Abbas
    Nahavandi, Saeid
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 621 - 632
  • [30] Constructing optimized interval type-2 TSK neuro-fuzzy systems with noise reduction property by quantum inspired BFA
    Huang, Sharina
    Chen, Minghao
    NEUROCOMPUTING, 2016, 173 : 1839 - 1850