Synthesis and electrochemical performances of LiNi0.5Mn1.5O4 spinels with different surface orientations for lithium-ion batteries

被引:18
|
作者
Zhou, Mushang [1 ,2 ,3 ]
Gong, Jiajia [1 ,2 ,3 ]
Deng, Ziyao [1 ,2 ,3 ]
Lang, Yaqiang [1 ,2 ,3 ]
Zong, Bo [1 ,2 ,3 ]
Guo, Jianling [1 ,2 ,3 ]
Wang, Li [1 ,2 ,3 ]
机构
[1] Hebei Univ Technol, Inst Power Source & Ecomat Sci, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Minist Educ, Key Lab Special Funct Mat Ecol Environm & Informa, Tianjin 300130, Peoples R China
[3] Hebei Univ Technol, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; Cathodes; LiNi; 0; 5Mn1; 5O(4); Surface orientations; Electrochemical performance; HIGH-VOLTAGE SPINEL; CATHODE MATERIALS; ELECTRODE/ELECTROLYTE INTERFACE; ELECTROLYTE-INTERFACE; LIMN1.5NI0.5O4; BEHAVIOR; PLANES; CHALLENGES; MORPHOLOGY; MECHANISM;
D O I
10.1007/s11581-019-03373-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.5Mn1.5O4 materials with three different particle shapes, including octahedron composed of {111} surface, truncated octahedron with {111} and {100} surfaces, and chamfered polyhedron with {111}, {100}, and {110} surfaces, have been synthesized via a combined coprecipitation-hydrothermal method followed by three different calcination processes. The materials were characterized by XRD, FT-IR, SEM, EIS, XPS, and galvanostatic charge/discharge tests. All samples have a main disordered structure and similar primary particle size. Electrochemical results show the rate capability degrades in the order of chamfered polyhedron > truncated octahedron > octahedron, while the cycling stability deteriorates in the order of truncated octahedron > octahedron > chamfered polyhedron. It can be concluded that the particle shape, more specifically, surface orientations, exerts great influence on the electrochemical performance of LiNi0.5Mn1.5O4 material. Therefore, appropriate tailoring of surface orientations can simultaneously satisfy power capability and long cycle life. The particle shape design is of significance to LiNi0.5Mn1.5O4 material.
引用
收藏
页码:2187 / 2200
页数:14
相关论文
共 50 条
  • [21] Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 as a 5 V cathode material for lithium ion batteries
    Dong, Yichen
    Wang, Zhenbo
    Qin, Hua
    Sui, Xulei
    RSC ADVANCES, 2012, 2 (31) : 11988 - 11992
  • [22] Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 Cathode in Lithium-ion Batteries
    Kim, Jaemin
    Go, Nakgyu
    Kang, Hyunchul
    Tron, Artur
    Mun, Junyoung
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2017, 8 (01) : 53 - 60
  • [23] Entropy Change Characteristics of the LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion Batteries
    Mao, Jing
    Zhang, Peng
    Liu, Xin
    Liu, Yanxia
    Shao, Guosheng
    Dai, Kehua
    ACS OMEGA, 2020, 5 (08): : 4109 - 4114
  • [24] Effect of Hydrothermal Temperature on Structure and Electrochemical Performances of LiNi0.5Mn1.5O4 Cathode Material for Lithium-ion Battery
    Wu, Wei
    Wang, Li
    Liu, Guijuan
    Chen, Dan
    Wang, Jiangfeng
    Liang, Guangchuan
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2016, 19 (02) : 43 - 49
  • [25] Hydrothermal Synthesis of a Nanosized LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium-Ion Batteries
    Huang, Xingkang
    Zhang, Qingshun
    Gan, Jianlong
    Chang, Haitao
    Yang, Yong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) : A139 - A145
  • [26] Synthesis of Spinel LiNi0.5Mn1.5O4 by a Wet Chemical Method and Characterization for Lithium-Ion Secondary Batteries
    Quispe, Luz
    Condoretty, Marco A.
    Kawasaki, Hideki
    Tsuji, Seiji
    Visbal, Heidy
    Miki, Hitomi
    Nagashima, Kohji
    Hirao, Kazuyuki
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2015, 123 (1433) : 38 - 42
  • [27] Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries
    Kedi Yang
    Jing Su
    Li Zhang
    Yunfei Long
    Xiaoyan Lv
    Yanxuan Wen
    Particuology, 2012, 10 (06) : 765 - 770
  • [28] Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries
    Yang, Kedi
    Su, Jing
    Zhang, Li
    Long, Yunfei
    Lv, Xiaoyan
    Wen, Yanxuan
    PARTICUOLOGY, 2012, 10 (06) : 765 - 770
  • [29] The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries
    Tongyong Yang
    Kening Sun
    Zhengyu Lei
    Naiqing Zhang
    Ye Lang
    Journal of Solid State Electrochemistry, 2011, 15 : 391 - 397
  • [30] Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries
    Wang, Jing
    Lin, Weiqing
    Wu, Bihe
    Zhao, Jinbao
    ELECTROCHIMICA ACTA, 2014, 145 : 245 - 253