Fast kernel feature ranking using class separability for big data mining

被引:4
|
作者
Liu, Zhiliang [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mechatron Engn, Chengdu 611731, Peoples R China
[2] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2016年 / 72卷 / 08期
关键词
Feature ranking; Kernel method; Parameter selection; Kernel class separability; Big data; FAULT LEVEL DIAGNOSIS; FEATURE-SELECTION; CLASSIFICATION; PARAMETER;
D O I
10.1007/s11227-015-1481-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel feature ranking often delivers many benefits for big data mining, e.g., improving generalization performance. However, its efficiency is quite challenging due to a need of tuning kernel parameters in the ranking process. In present work, we propose a computational-light metric based on kernel class separability for kernel feature ranking. In the proposed metric, the kernel parameter is optimized by a proposed analytical algorithm rather than an optimization search algorithm. Experimental results demonstrate that (1) the proposed metric can lead to a fast and robust kernel feature ranking; and (2) the proposed analytical algorithm can select a right kernel parameter with much less computation time for two state-of-the-arts kernel metrics.
引用
收藏
页码:3057 / 3072
页数:16
相关论文
共 50 条
  • [1] Fast kernel feature ranking using class separability for big data mining
    Zhiliang Liu
    [J]. The Journal of Supercomputing, 2016, 72 : 3057 - 3072
  • [2] Feature selection with kernel class separability
    Wang, Lei
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (09) : 1534 - 1546
  • [3] Feature ranking derived from data mining process
    Pilny, Ales
    Kordik, Pavel
    Snorek, Miroslav
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 889 - 898
  • [4] Mining "Big Data" using Big Data Services
    Reips, Ulf-Dietrich
    Matzat, Uwe
    [J]. INTERNATIONAL JOURNAL OF INTERNET SCIENCE, 2014, 9 (01) : 1 - 8
  • [5] Fast kernel matrix computation for big data clustering
    20153401191949
    [J]. (1) Aristotle University of Thessaloniki, Thessaloniki, Greece, (Elsevier B.V., Netherlands):
  • [6] Fast Kernel Matrix Computation for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Iosifidis, Alexandros
    Pitas, Ioannis
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2445 - 2452
  • [7] Mining the Big Data: The Critical Feature Dimension Problem
    Liu, Qingzhong
    Sung, Andrew H.
    Ribeiro, Bernardete
    Suryakumar, Divya
    [J]. 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), 2014, : 499 - 504
  • [8] Associative Feature Information Extraction Using Text Mining from Health Big Data
    Joo-Chang Kim
    Kyungyong Chung
    [J]. Wireless Personal Communications, 2019, 105 : 691 - 707
  • [9] Associative Feature Information Extraction Using Text Mining from Health Big Data
    Kim, Joo-Chang
    Chung, Kyungyong
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2019, 105 (02) : 691 - 707
  • [10] Feature selection for classification with class-separability strategy and data envelopment analysis
    Zhang, Yishi
    Yang, Chao
    Yang, Anrong
    Xiong, Chan
    Zhou, Xingchi
    Zhang, Zigang
    [J]. NEUROCOMPUTING, 2015, 166 : 172 - 184