Filling dependence of thermoelectric power in transition-metal monosilicides

被引:0
|
作者
Sakai, A. [1 ,2 ]
Yotsuhashi, S. [2 ]
Adachi, H. [2 ]
Ishii, F. [3 ]
Onose, Y. [4 ,5 ]
Tomioka, Y. [1 ]
Nagaosa, N. [1 ,5 ,6 ]
Tokura, Y. [1 ,4 ,5 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, CERC, Tsukuba, Ibaraki 3058562, Japan
[2] Matsushita Elect Ind Co Ltd, Adv Technol Res Labs, Kyoto 6190237, Japan
[3] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
[4] ERATO, JST, Multiferroics Project, Tsukuba, Ibaraki 3058562, Japan
[5] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[6] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated temperature and electron-numebr (band-filling) dependence of Seebeck coefficient in B20-type transition-metal monosilicides experimentally to gain the systematics of thermoelectric properties. This can lead to a perspective on the materials design of metallic thermoelectric compounds by comparing a result of band calculation. On the basis of the seebeck coefficient measurement, we show the global systematics of thermopowcr for a wide range of materials (CrSi - MnSi - FeSi - COSi - C0(0.85)Ni(0.15)Si and their interpolating solid solutions). Versatile behaviors of Seebeck coefficient are observed with variations of temperature and electron-number: steep or gradual sign change, a large positive or negative value of Seebeck coefficient, etc. As for the thermoelectricity in these materials, the best performance among these materials is around CoSi at room temperature, showing large adjacent p- and n-type thermopower. The power factor (S-2/rho) is evaluated 25 mu W/cmK(2) at CoSi, which is as high as that of Na0.75CoO2 a material known for a thermoelectric oxide material, though the thermal conductivity is larger (similar to 10 W/mK).
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [21] Novel thermoelectric properties of complex transition-metal oxides
    Terasaki, Ichiro
    Iwakawa, Manabu
    Nakano, Tomohito
    Tsukuda, Akira
    Kobayashi, Wataru
    DALTON TRANSACTIONS, 2010, 39 (04) : 1005 - 1011
  • [22] Topological diffusive metal in amorphous transition metal monosilicides
    Franca, Selma
    Grushin, Adolfo G.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02):
  • [23] THERMOELECTRIC POWER IN TRANSITION METAL ALLOYS
    WOOD, VE
    PHYSICS LETTERS, 1965, 16 (03): : 228 - &
  • [24] SINGULAR VOLUME DEPENDENCE OF TRANSITION-METAL MAGNETISM
    MORUZZI, VL
    PHYSICAL REVIEW LETTERS, 1986, 57 (17) : 2211 - 2214
  • [25] Temperature dependence of the transition-metal magnetic susceptibilities
    Charlesworth, JPA
    Yeung, W
    PHYSICAL REVIEW B, 1996, 53 (05): : 2606 - 2614
  • [26] TEMPERATURE-DEPENDENCE OF TRANSITION-METAL MAGNETISM
    SCHWARTZMAN, K
    HARTFORD, EJ
    FRY, JL
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (09) : 4552 - 4554
  • [27] THERMOELECTRIC STUDIES OF POINT-DEFECTS IN TRANSITION-METAL OXIDES
    MASON, TO
    AMERICAN CERAMIC SOCIETY BULLETIN, 1982, 61 (08): : 808 - 808
  • [28] Thermoelectric performances of perovskite transition-metal oxides at high temperature
    Flahaut, Delphine
    Goupil, Christophe
    Hebert, Sylvie
    Lemonnier, Sebastien
    Noudem, Jacques
    Maignan, Antoine
    Funahashi, Ryoji
    TRANSACTIONS OF THE MATERIALS RESEARCH SOCIETY OF JAPAN, VOL 31, NO 2, 2006, 31 (02): : 371 - 374
  • [29] THERMOELECTRIC ANALYSIS OF TRANSPORT IN LINEAR TRANSITION-METAL ORGANOMETALLIC COMPOUNDS
    MCKENZIE, JW
    BUBE, RH
    WU, C
    APPLIED PHYSICS LETTERS, 1972, 21 (05) : 187 - &
  • [30] Conduction mechanism and thermoelectric properties of layered transition-metal dichalcogenides
    Koyano, M
    Emoto, H
    Yamamura, Y
    Katayama, S
    Tsuji, T
    PRICM 4: FORTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, VOLS I AND II, 2001, : 2169 - 2172