Towards high-performance supercapacitors with cellulose-based carbon for zinc-ion storage

被引:19
|
作者
Yang, Lvye [1 ]
Li, Jingqiu [1 ]
Zhou, Yichen [1 ]
Yao, Jianfeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Jiangsu Key Lab Chem & Utilizat Agr & Forest Biom, Nanjing 210037, Jiangsu, Peoples R China
关键词
Cellulose; Porous carbon; Zinc ion; Supercapacitor; HIERARCHICAL POROUS CARBON; HYBRID SUPERCAPACITORS; BIOMASS; ELECTROLYTE; CAPACITORS; NANOSHEETS; PROGRESS; LIFE; SAFE;
D O I
10.1016/j.est.2022.104252
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous zinc-ion hybrid supercapacitors (ZHSs) are desirable as promising energy storage devices due to their high energy/power density, stability, and safety. Designing a carbon cathode is the key to improving the performance of ZHSs. A cotton pulp paper is used as the starting material to prepare the porous cellulose-derived carbon (CDC) by a ZnCl2 molten salt activation method. Different zinc salts are then employed as aqueous electrolytes to match the CDC for improving the capacitance performance. The CDC-assembled ZHS using a ZnCl2 electrolyte reaches a high capacitance of 357 F g(-1) at the current density of 0.5 A g(-1). The excellent capacitance of CDC in ZHSs can be attributed to the abundant mesoporous and macroporous structures. Using the cotton pulp paper and ZnCl2, a ZnCl2-included cellulose hydrogel can also be assembled as a solid-state electrolyte. The solid-state ZHS with CDC shows an extremely high capacity of 247 mAh g(-1) and energy density of 243 W h kg(-1)& nbsp;at the power density of 492 W kg(-1), as well as excellent stability with a capacity retention of 85% after 20,000 cycles.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A REVIEW ON DURABILITY OF HIGH-PERFORMANCE CELLULOSE-BASED BIOCOMPOSITES
    Faheed, Noor K.
    Issa, Rasha Abdul-Hassan
    Hamad, Qahtan A.
    NANOSCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL, 2024, 15 (04) : 97 - 118
  • [42] An interactive dual energy storage mechanism boosts high-performance aqueous zinc-ion batteries
    Gong, Shengen
    Zhu, Meihua
    Zhou, Yan
    Li, Runan
    Zhang, Jianhua
    Jia, Xiaoteng
    Chao, Danming
    Wang, Caiyun
    CHEMICAL SCIENCE, 2024, 15 (47) : 19870 - 19885
  • [43] Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries
    Yu Tan
    Jinjun He
    Bo Wang
    Cheng Chao Li
    Taihong Wang
    Chinese Chemical Letters, 2023, 34 (04) : 521 - 526
  • [44] Tuning the pore structure of N/O co-doped porous carbon nanosheets for high-performance supercapacitors and zinc-ion capacitors
    Sun, Yayi
    Sheng, Zhe
    Chen, Enhui
    Tang, Zhiyang
    Wang, Jingle
    Zhu, Xiudong
    Wang, Zhaohao
    Li, Xin
    Xie, Xiaoyin
    Lin, Xiongchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 118 : 35 - 45
  • [45] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [46] Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries
    Tan, Yu
    He, Jinjun
    Wang, Bo
    Li, Cheng Chao
    Wang, Taihong
    CHINESE CHEMICAL LETTERS, 2023, 34 (04)
  • [47] Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide
    Liu, Zhengwei
    Xue, Tao
    Liu, Qifan
    Qin, Feng
    He, Minhua
    Yang, Chao
    Zang, Limin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (08)
  • [48] Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide
    Zhengwei Liu
    Tao Xue
    Qifan Liu
    Feng Qin
    Minhua He
    Chao Yang
    Limin Zang
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [49] Bimetallic-ion co-intercalation to stabilize vanadium-oxygen bonds towards high-performance aqueous zinc-ion storage
    Jiang, Yulin
    Wen, Xia
    Li, Yinuo
    Li, Yuhang
    Peng, Yanan
    Feng, Wang
    Li, Xiaohui
    Yang, Junbo
    Song, Luying
    Huang, Ling
    Sun, Hang
    Shi, Jianping
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, : 645 - 653
  • [50] Study of Zinc Diffusion Based on S, N-Codoped Honeycomb Carbon Cathodes for High-Performance Zinc-Ion Capacitors
    Zhang, Qiaoyu
    Yuan, Ming
    Liu, Lina
    Li, Shiyun
    Chen, Xuecheng
    Liu, Jie
    Pang, Xueyong
    Wang, Xiaojing
    LANGMUIR, 2024, 40 (10) : 5326 - 5337