Hausdorff dimension of self-affine limit sets with an invariant direction

被引:6
|
作者
Baranski, Krzysztof [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
Hausdorff dimension; fractal; Sierpinski triangle; iterated function system;
D O I
10.3934/dcds.2008.21.1015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the Hausdorff dimension of self-affine limit sets for some class of iterated function systems in the plane with an invariant direction. In particular, the method applies to some type of generalized non-self-similar Sierpinski triangles. This partially answers a question asked by Falconer and Lammering and extends a result by Lalley and Gatzouras.
引用
收藏
页码:1015 / 1023
页数:9
相关论文
共 50 条
  • [21] V-dimension of self-affine sets
    Peng, Yuejian
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 1994, 21 (03):
  • [22] Dimension of generic self-affine sets with holes
    Henna Koivusalo
    Michał Rams
    Monatshefte für Mathematik, 2019, 188 : 527 - 546
  • [23] ASSOUAD DIMENSION OF PLANAR SELF-AFFINE SETS
    Barany, Balazs
    Kaenmaki, Antti
    Rossi, Eino
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1297 - 1326
  • [24] Genericity of dimension drop on self-affine sets
    Kaenmaki, Antti
    Li, Bing
    STATISTICS & PROBABILITY LETTERS, 2017, 126 : 18 - 25
  • [25] ON THE DIMENSION OF SELF-AFFINE SETS AND MEASURES WITH OVERLAPS
    Barany, Balazs
    Michalrams
    Simon, Karoly
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4427 - 4440
  • [26] Dimension of generic self-affine sets with holes
    Koivusalo, Henna
    Rams, Michal
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03): : 527 - 546
  • [27] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [28] Dimension Functions of Self-Affine Scaling Sets
    Fu, Xiaoye
    Gabardo, Jean-Pierre
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 745 - 758
  • [29] THE PROBABILITY-DISTRIBUTION AND HAUSDORFF DIMENSION OF SELF-AFFINE FUNCTIONS
    URBANSKI, M
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (03) : 377 - 391
  • [30] Dimension of self-affine sets for fixed translation vectors
    Barany, Balazs
    Kaenmaki, Antti
    Koivusalo, Henna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 223 - 252