Dynamical singularities in adaptive delayed-feedback control

被引:0
|
作者
Saito, Asaki [1 ,2 ]
Konishi, Keiji [3 ]
机构
[1] Future Univ Hakodate, Hakodate, Hokkaido 0418655, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Osaka Prefecture Univ, Osaka 5998531, Japan
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 03期
关键词
ORBITS;
D O I
10.1103/PhysRevE.84.031902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate the dynamical characteristics of adaptive delayed-feedback control systems, exploiting a discrete-time adaptive control method derived for carrying out detailed analysis. In particular, the systems exhibit singularities such as power-law decay of the distribution of transient times and almost zero finite-time Lyapunov exponents. We can explain these results by characterizing such systems as having (1) a Jacobian matrix with unity eigenvalue in the whole phase space, and (2) parameters approaching a stability boundary proven to be identical with that of (nonadaptive) delayed-feedback control.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dissipative solitons for bistable delayed-feedback systems
    Semenov, Vladimir V.
    Maistrenko, Yuri L.
    CHAOS, 2018, 28 (10)
  • [32] Stabilization of traffic flow in optimal velocity model via delayed-feedback control
    Jin, Yanfei
    Hu, Haiyan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) : 1027 - 1034
  • [33] Stability of extended delayed-feedback control for discrete-time chaotic systems
    Konishi, K
    Ishii, M
    Kokame, H
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (10): : 1285 - 1288
  • [34] Delayed-feedback control of spatial bifurcations and chaos in open-flow models
    Konishi, K
    Kokame, H
    Hirata, K
    PHYSICAL REVIEW E, 2000, 62 (01): : 384 - 388
  • [35] Coupled map car-following model and its delayed-feedback control
    Konishi, K
    Kokame, H
    Hirata, K
    PHYSICAL REVIEW E, 1999, 60 (04) : 4000 - 4007
  • [36] Exponential Synchronization of General Complex Delayed Dynamical Networks via Adaptive Feedback Control
    Zhang, Haifeng
    Wang, Binghong
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1540 - +
  • [37] Methods for Control of Dynamical Systems with Delayed Feedback
    Boykov I.V.
    Krivulin N.P.
    Journal of Mathematical Sciences, 2021, 255 (5) : 561 - 573
  • [38] Stability of extended delayed-feedback control for discrete-time chaotic systems
    Osaka Prefecture Univ, Osaka, Japan
    IEEE Trans Circuits Syst I Fundam Theor Appl, 10 (1285-1288):
  • [39] Controlled stochastization of oscillations in a chaotic delayed-feedback system
    Kal'yanov, Er. V.
    TECHNICAL PHYSICS LETTERS, 2009, 35 (11) : 1054 - 1057
  • [40] Robust stability of extended delayed-feedback control in one-dimensional chaotic systems
    Ishii, M
    Konishi, K
    Kokame, H
    PHYSICS LETTERS A, 1997, 235 (06) : 603 - 609