Spatiotemporal Variation of Aerosol Optical Depth Based on 3-D Spatiotemporal Interpolation

被引:0
|
作者
Zhang, Lei [1 ,2 ]
Zhang, Ming [3 ]
机构
[1] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen 518034, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpolation; Spatiotemporal phenomena; MODIS; Aerosols; Time series analysis; Correlation; Optical imaging; 3-D spatiotemporal interpolation; aerosol optical depth (AOD); Beijing-Tianjin-Hebei urban agglomeration (BTHUA); 2; DECADES; MODIS; CHINA; AOD;
D O I
10.1109/LGRS.2021.3120105
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To solve the problem of low coverage of MODIS aerosol optical depth (AOD) products, this letter proposes a 3-D spatiotemporal interpolation method to predict missing values for time series AOD products. In this study, ordinary Kriging interpolation and 3-D spatiotemporal interpolation are applied to analyze the dynamics of AOD in Beijing-Tianjin-Hebei urban agglomeration (BTHUA), China, and the performances of the two methods are compared. The results show that the 3-D spatiotemporal interpolation has a better performance in predicting missing data of AOD products. The proposed interpolation method provides a feasible solution for the establishment of long-term MODIS aerosol products with temporal and spatial consistency, and also provides effective data support for the study of urban environmental changes.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] 3-D–2-D spatiotemporal registration for sports motion analysis
    Wee Kheng Leow
    Ruixuan Wang
    Hon Wai Leong
    [J]. Machine Vision and Applications, 2012, 23 : 1177 - 1194
  • [32] Gap-filling MODIS daily aerosol optical depth products by developing a spatiotemporal fitting algorithm
    Zhang, Tao
    Zhou, Yuyu
    Zhao, Kaiguang
    Zhu, Zhengyuan
    Asrar, Ghassem R.
    Zhao, Xia
    [J]. GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 762 - 781
  • [33] Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
    Liang, Lu
    Daniels, Jacob
    Biancardi, Michael
    Zhou, Yuye
    [J]. SCIENTIFIC DATA, 2023, 10 (01)
  • [34] Spatiotemporal variations and long term trends analysis of aerosol optical depth over the United Arab Emirates
    Abuelgasim, Abdelgadir
    Bilal, Muhammad
    Alfaki, Ibrahim Abdalla
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
  • [35] Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
    Lu Liang
    Jacob Daniels
    Michael Biancardi
    Yuye Zhou
    [J]. Scientific Data, 10
  • [36] 3-D SPATIOTEMPORAL SUBBAND DECOMPOSITION OF IMAGE SEQUENCES BY MATHEMATICAL MORPHOLOGY
    PEI, SC
    CHEN, FC
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1994, 17 (02) : 289 - 303
  • [37] Synthesis of nonseparable 3-D spatiotemporal bandpass filters on analog networks
    Ip, Henry Man D.
    Drakakis, Emmanuel M.
    Bharath, Anil Anthony
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (01) : 286 - 298
  • [38] Review of retrieval of aerosol optical depth to estimate particle concentration and its challenges based on spatiotemporal relationships by various spectroradiometer models
    Samuel, Cyril
    Kumar, Roshini Praveen
    Gautam, Sneha
    [J]. GEOLOGICAL JOURNAL, 2023, 58 (12) : 4403 - 4416
  • [39] Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aerosol Types
    Hutauruk, Rheinhart C. H.
    Permana, Donaldi S.
    Rangga, Imron A.
    Sucianingsih, Cici
    Nuraini, Tri A.
    [J]. ADVANCES IN METEOROLOGY, 2022, 2022
  • [40] A new shape function based spatiotemporal interpolation method
    Li, LX
    Li, YM
    Piltner, R
    [J]. CONSTRAINT DATABASES, PROCEEDINGS, 2004, 3074 : 25 - 39