Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance

被引:3
|
作者
Xue, Kai [1 ]
Nimerovsky, Evgeny [1 ]
Movellan, Kumar A. Tekwani [1 ,2 ]
Becker, Stefan [1 ]
Andreas, Loren B. [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NMR Based Struct Biol, D-37077 Gottingen, Germany
[2] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 01期
关键词
SOLID-STATE NMR; PROTEIN BACKBONE; CHEMICAL-SHIFT; COUPLING-CONSTANTS; RF INHOMOGENEITY; GXXXG-LIKE; SPECTROSCOPY; PHI; RESOLUTION; PEPTIDES;
D O I
10.1021/acs.jpclett.1c03267
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protein torsion angles define the backbone secondary structure of proteins. Magic-angle spinning (MAS) NMR methods using carbon detection have been developed to measure torsion angles by determining the relative orientation between two anisotropic interactions.dipolar coupling or chemical shift anisotropy. Here we report a new proton-detection based method to determine the backbone torsion angle by recoupling NH and CH dipolar couplings within the HCANH pulse sequence, for protonated or partly deuterated samples. We demonstrate the efficiency and precision of the method with microcrystalline chicken a spectrin SH3 protein and the influenza A matrix 2 (M2) membrane protein, using 55 or 90 kHz MAS. For M2, pseudo-4D data detect a turn between transmembrane and amphipathic helices.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 50 条
  • [21] MAGIC-ANGLE SPINNING P-31 NUCLEAR-MAGNETIC-RESONANCE OF POLYCRYSTALLINE SODIUM PHOSPHATES
    GRIFFITHS, L
    ROOT, A
    HARRIS, RK
    PACKER, KJ
    CHIPPENDALE, AM
    TROMANS, FR
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1986, (10): : 2247 - 2251
  • [22] Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement
    Mizuno, Takashi
    Hioka, Katsuya
    Fujioka, Koji
    Takegoshi, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (04):
  • [23] Identifying and quantifying actinide radiation damage in ceramics with radiological magic-angle spinning nuclear magnetic resonance
    Farnan, Ian
    Cho, Herman
    Weber, William J.
    ACTINIDES 2006-BASIC SCIENCE, APPLICATIONS AND TECHNOLOGY, 2007, 986 : 197 - +
  • [24] MAGIC-ANGLE SPINNING NA-23 NUCLEAR MAGNETIC-RESONANCE STUDIES OF CRYSTALLINE SODIDES
    ELLABOUDY, A
    TINKHAM, ML
    VANECK, B
    DYE, JL
    SMITH, PB
    JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (17): : 3852 - 3855
  • [25] C-13 NUCLEAR MAGNETIC-RESONANCE CHARACTERIZATION OF COAL MACERALS BY MAGIC-ANGLE SPINNING
    MACIEL, GE
    SULLIVAN, MJ
    PETRAKIS, L
    GRANDY, DW
    FUEL, 1982, 61 (05) : 411 - 414
  • [26] VARIED MAGNETIC-FIELD, MULTIPLE-PULSE, AND MAGIC-ANGLE SPINNING PROTON NUCLEAR MAGNETIC-RESONANCE STUDY OF MUSCLE WATER
    FUNG, BM
    RYAN, LM
    GERSTEIN, BC
    BIOPHYSICAL JOURNAL, 1980, 29 (02) : 229 - 236
  • [27] CHARACTERIZATION OF ORGANIC MATERIAL IN COAL BY PROTON-DECOUPLED C-13 NUCLEAR MAGNETIC-RESONANCE WITH MAGIC-ANGLE SPINNING
    MACIEL, GE
    BARTUSKA, VJ
    MIKNIS, FP
    FUEL, 1979, 58 (05) : 391 - 394
  • [28] Rotary resonance in multiple-quantum magic-angle spinning
    Gan, ZH
    Grandinetti, P
    CHEMICAL PHYSICS LETTERS, 2002, 352 (3-4) : 252 - 261
  • [29] Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning
    Fricke, Pascal
    Chevelkov, Veniamin
    Zinke, Maximilian
    Giller, Karin
    Becker, Stefan
    Lange, Adam
    NATURE PROTOCOLS, 2017, 12 (04) : 764 - 782
  • [30] Fast Magic-Angle Spinning: Implications
    Samoson A.
    Tuherm T.
    Past J.
    Reinhold A.
    Heinmaa I.
    Anupold T.
    Smith M.E.
    Pike K.J.
    eMagRes, 2010, 2010