Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics

被引:236
|
作者
Halverson, Jonathan D. [1 ]
Lee, Won Bo [1 ,2 ]
Grest, Gary S. [3 ]
Grosberg, Alexander Y. [4 ]
Kremer, Kurt [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul, South Korea
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] NYU, Dept Phys, New York, NY 10003 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 20期
基金
美国能源部;
关键词
DISSIPATIVE PARTICLE DYNAMICS; COMPUTER-SIMULATION; WEIGHT; POLYSTYRENE; DEPENDENCE; DIFFUSION; VISCOSITY; TOPOLOGY; LIQUIDS; SHEAR;
D O I
10.1063/1.3587138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations were conducted to investigate the dynamic properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. The ring melts were found to diffuse faster than their linear counterparts, with both architectures approximately obeying a D similar to N-2.4 scaling law for large N. The mean-square displacement of the center-of-mass of the rings follows a sub-diffusive behavior for times and distances beyond the ring extension < R-g(2)>, neither compatible with the Rouse nor the reptation model. The rings relax stress much faster than linear polymers, and the zero-shear viscosity was found to vary as eta(0) similar to N-1.4 +/- 0.2 which is much weaker than the N-3.4 behavior of linear chains, not matching any commonly known model for polymer dynamics when compared to the observed mean-square displacements. These findings are discussed in view of the conformational properties of the rings presented in the preceding paper [J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011)]. (C) 2011 American Institute of Physics. [doi:10.1063/1.3587138]
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Molecular simulation of protein dynamics in nanopores. II. Diffusion
    Javidpour, Leili
    Tabar, M. Reza Rahimi
    Sahimi, Muhammad
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (08):
  • [22] Dehydration dynamics of bikitaite: Part II. Ab initio molecular dynamics study
    Ceriani, C
    Fois, E
    Gamba, A
    Tabacchi, G
    Ferro, O
    Quartieri, S
    Vezzalini, G
    AMERICAN MINERALOGIST, 2004, 89 (01) : 102 - 109
  • [23] Langevin dynamics simulation of crystallization of ring polymers
    Iyer, Kiran
    Muthukumar, Murugappan
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [24] Molecular dynamics simulation of semicrystalline polymers
    Duan, Fangli
    Yan, Shidang
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (05): : 759 - 765
  • [25] Topological catenation induced swelling of ring polymers revealed by molecular dynamics simulation
    Zhang, Guojie
    Zhang, Jianguo
    POLYMER, 2020, 196 (196)
  • [26] Molecular Scale Dynamics of Large Ring Polymers
    Goossen, S.
    Bras, A. R.
    Krutyeva, M.
    Sharp, M.
    Falus, P.
    Feoktystov, A.
    Gasser, U.
    Pyckhout-Hintzen, W.
    Wischnewski, A.
    Richter, D.
    PHYSICAL REVIEW LETTERS, 2014, 113 (16)
  • [27] Molecular dynamics simulation of oxygen in silicon melt
    Kakimoto, K
    Kikuchi, S
    Ozoe, H
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 114 - 119
  • [28] MOLECULAR-DYNAMICS SIMULATION OF SILICA MELT
    FRENKEL, MY
    WASSERMAN, EA
    GEOKHIMIYA, 1991, (08): : 1194 - 1203
  • [29] Molecular dynamics simulation of oxygen in silicon melt
    Kakimoto, K.
    Kikuchi, Shin
    Ozoe, Hiroyuki
    Journal of Crystal Growth, 1999, 198-199 (pt 1): : 114 - 119
  • [30] A reactive molecular dynamics model of thermal decomposition in polymers. II. Polyisobutylene
    Stoliarov, SI
    Lyon, RE
    Nyden, MR
    POLYMER, 2004, 45 (25) : 8613 - 8621