Towards a Set Theoretical Approach to Big Data Analytics

被引:8
|
作者
Mukkamala, Raghava Rao [1 ]
Hussain, Abid [2 ]
Vatrapu, Ravi [2 ]
机构
[1] IT Univ Copenhagen, Rued Langgaardsvej 7, DK-2300 Copenhagen, Denmark
[2] Copenhagen Business Sch, DK-2000 Frederiksberg, Denmark
关键词
Formal Methods; Social Data Analytics; Computational Social Science; Data Science; Big Social Data;
D O I
10.1109/BigData.Congress.2014.96
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Formal methods, models and tools for social big data analytics are largely limited to graph theoretical approaches such as social network analysis (SNA) informed by relational sociology. There are no other unified modeling approaches to social big data that integrate the conceptual, formal and software realms. In this paper, we first present and discuss a theory and conceptual model of social data. Second, we outline a formal model based on set theory and discuss the semantics of the formal model with a real-world social data example from Facebook. Third, we briefly present and discuss the Social Data Analytics Tool (SODATO) that realizes the conceptual model in software and provisions social data analysis based on the conceptual and formal models. Fourth and last, based on the formal model and sentiment analysis of text, we present a method for profiling of artifacts and actors and apply this technique to the data analysis of big social data collected from Facebook page of the fast fashion company, H&M.
引用
收藏
页码:629 / 636
页数:8
相关论文
共 50 条
  • [31] Business Process Analytics Using a Big Data Approach
    Vera-Baquero, Alejandro
    Colomo-Palacios, Ricardo
    Molloy, Owen
    [J]. IT PROFESSIONAL, 2013, 15 (06) : 29 - 35
  • [32] A Big Data Analytics Based Approach to Anomaly Detection
    Razaq, Abdul
    Tianfield, Huaglory
    Barrie, Peter
    [J]. 2016 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT), 2016, : 187 - 193
  • [33] Systematic Approach on Big Data Analytics in Education Systems
    Swathi, R.
    Kumar, N. Pavan
    KiranKranth, L.
    Madhav, L. Sethu
    Seshadri, R.
    [J]. 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 420 - 423
  • [34] Economic System Simulation With Big Data Analytics Approach
    Li, Menggang
    Li, Ting
    Quan, Daiyong
    Li, Wenrui
    [J]. IEEE ACCESS, 2020, 8 : 35572 - 35582
  • [35] A big data analytics approach to combat telecommunication vulnerabilities
    Jensen, Kristoffer
    Hai Thanh Nguyen
    Thanh Van Do
    Arnes, Andre
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (03): : 2363 - 2374
  • [36] A big data analytics based machining optimisation approach
    Wei Ji
    Shubin Yin
    Lihui Wang
    [J]. Journal of Intelligent Manufacturing, 2019, 30 : 1483 - 1495
  • [37] A big data analytics approach to combat telecommunication vulnerabilities
    Kristoffer Jensen
    Hai Thanh Nguyen
    Thanh Van Do
    André Årnes
    [J]. Cluster Computing, 2017, 20 : 2363 - 2374
  • [38] Big Data Analytics for Earth Sciences: the EarthServer approach
    Baumann, Peter
    Mazzetti, Paolo
    Ungar, Joachim
    Barbera, Roberto
    Barboni, Damiano
    Beccati, Alan
    Bigagli, Lorenzo
    Boldrini, Enrico
    Bruno, Riccardo
    Calanducci, Antonio
    Campalani, Piero
    Clements, Oliver
    Dumitru, Alex
    Grant, Mike
    Herzig, Pasquale
    Kakaletris, George
    Laxton, John
    Koltsida, Panagiota
    Lipskoch, Kinga
    Mahdiraji, Alireza Rezaei
    Mantovani, Simone
    Merticariu, Vlad
    Messina, Antonio
    Misev, Dimitar
    Natali, Stefano
    Nativi, Stefano
    Oosthoek, Jelmer
    Pappalardo, Marco
    Passmore, James
    Rossi, Angelo Pio
    Rundo, Francesco
    Sen, Marcus
    Sorbera, Vittorio
    Sullivan, Don
    Torrisi, Mario
    Trovato, Leonardo
    Veratelli, Maria Grazia
    Wagner, Sebastian
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (01) : 3 - 29
  • [39] HR and analytics: why HR is set to fail the big data challenge
    Angrave, David
    Charlwood, Andy
    Kirkpatrick, Ian
    Lawrence, Mark
    Stuart, Mark
    [J]. HUMAN RESOURCE MANAGEMENT JOURNAL, 2016, 26 (01) : 1 - 11
  • [40] Fast and Scalable Distributed Set Similarity Joins for Big Data Analytics
    Rong, Chuitian
    Lin, Chunbin
    Silva, Yasin N.
    Wang, Jianguo
    Lu, Wei
    Du, Xiaoyong
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1059 - 1070