Estimation efficiency in a binary mixed-effects model setting

被引:22
|
作者
Neuhaus, JM [1 ]
Lesperance, ML [1 ]
机构
[1] UNIV VICTORIA,DEPT MATH & STAT,VICTORIA,BC V8W 3P4,CANADA
关键词
clustered data; conditional likelihood; semiparametric mixture model;
D O I
10.1093/biomet/83.2.441
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the efficiency of likelihood methods for estimating the regression parameters of mixed-effects logistic regression models. One approach uses a conditional likelihood which eliminates the random intercept terms. A second uses the likelihood generated from the marginal distribution of the data where the random intercepts are integrated out. Parametric estimates result from assuming a parametric form for the intercept distribution, whereas we obtain semiparametric estimates when the intercept distribution is left unspecified. We present an expression which shows that the asymptotic relative efficiency of conditional likelihood estimators relative to parametric estimators is a decreasing function of within-cluster covariate correlation. Simulation results show the same for the asymptotic relative efficiency of the semiparametric estimator. relative to the conditional. For fixed covariate correlation, the asymptotic relative efficiency of the parametric versus the conditional increases as cluster sizes increase. Example data further illustrate our findings.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 50 条
  • [1] Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data
    Cao, Chunzheng
    He, Ming
    Shi, Jian Qing
    Liu, Xin
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 1461 - 1479
  • [2] Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data
    Chunzheng Cao
    Ming He
    Jian Qing Shi
    Xin Liu
    [J]. Computational Statistics, 2021, 36 : 1461 - 1479
  • [3] Estimation of forest aboveground biomass by using mixed-effects model
    Feng, Haoning
    Chen, Qi
    Hu, Yueming
    Du, Zhiguo
    Lin, Guantu
    Wang, Changwei
    Huang, Youju
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (22) : 8675 - 8690
  • [4] Nonparametric estimation of random-effects densities in linear mixed-effects model
    Comte, Fabienne
    Samson, Adeline
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 951 - 975
  • [5] Mixed-effects model by projections
    Choi, Jaesung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1155 - 1163
  • [6] CONDITIONS FOR CONSISTENT ESTIMATION IN MIXED-EFFECTS MODELS FOR BINARY MATCHED-PAIRS DATA
    NEUHAUS, JM
    KALBFLEISCH, JD
    HAUCK, WW
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (01): : 139 - 148
  • [7] Wavelet estimation in nonparametric linear mixed-effects errors in variables model
    Yalaz, Secil
    Kuran, Ozge
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (03): : 620 - 629
  • [8] The transition model test for serial dependence in mixed-effects models for binary data
    Breinegaard, Nina
    Rabe-Hesketh, Sophia
    Skrondal, Anders
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) : 1756 - 1773
  • [9] Mixed-Effects Models and Small Area Estimation
    Rarasari, Desak Made Goldyna
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (04) : 591 - 593
  • [10] Mixed-Effects Models and Small Area Estimation
    Nummi, Tapio
    Sugasawa, Shonosuke
    Kubokava, Tatsuya
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (03) : 536 - 536