The Imaginative Generative Adversarial Network: Automatic Data Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action Recognition

被引:0
|
作者
Shen, Junxiao [1 ]
Dudley, John [1 ]
Kristensson, Per Ola [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies based on scaling, shifting and interpolating offer limited generalizability and typically require detailed inspection of the dataset as well as hundreds of GPU hours for hyperparameter optimization. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN), that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. We demonstrate our approach on small-scale skeleton-based datasets with a comprehensive experimental analysis. Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both conventional neural networks and state-of-the-art methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Data Augmentation Method for Skeleton-Based Action Recognition with Relative Features
    Chen, Junjie
    Yang, Wei
    Liu, Chenqi
    Yao, Leiyue
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [22] Generative Action Description Prompts for Skeleton-based Action Recognition
    Xiang, Wangmeng
    Li, Chao
    Zhou, Yuxuan
    Wang, Biao
    Zhang, Lei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10242 - 10251
  • [23] Adversarial Action Data Augmentation for Similar Gesture Action Recognition
    Wu, Di
    Chen, Junjun
    Sharma, Nabin
    Pan, Shirui
    Long, Guodong
    Blumenstein, Michael
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [24] SHREC 2021: Skeleton-based hand gesture recognition in the wild
    Caputo, Ariel
    Giachetti, Andrea
    Soso, Simone
    Pintani, Deborah
    D'Eusanio, Andrea
    Pini, Stefano
    Borghi, Guido
    Simoni, Alessandro
    Vezzani, Roberto
    Cucchiara, Rita
    Ranieri, Andrea
    Giannini, Franca
    Lupinetti, Katia
    Monti, Marina
    Maghoumi, Mehran
    LaViola Jr, J. Joseph
    Le, Minh-Quan
    Nguyen, Hai-Dang
    Tran, Minh-Triet
    COMPUTERS & GRAPHICS-UK, 2021, 99 : 201 - 211
  • [25] Spatial temporal graph convolutional networks for skeleton-based dynamic hand gesture recognition
    Li, Yong
    He, Zihang
    Ye, Xiang
    He, Zuguo
    Han, Kangrong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019, 2019 (01)
  • [26] Spatial temporal graph convolutional networks for skeleton-based dynamic hand gesture recognition
    Yong Li
    Zihang He
    Xiang Ye
    Zuguo He
    Kangrong Han
    EURASIP Journal on Image and Video Processing, 2019
  • [27] A Comparison of Machine Learning Models with Data Augmentation Techniques for Skeleton-based Human Action Recognition
    Xin, Chu
    Kim, Seokhwan
    Park, Kyoung Shin
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [28] RELATIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zheng, Wu
    Li, Lin
    Zhang, Zhaoxiang
    Huang, Yan
    Wang, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 826 - 831
  • [29] Generative Adversarial Network (GAN) based Data Augmentation for Palmprint Recognition
    Wang, Gengxing
    Kang, Wenxiong
    Wu, Qiuxia
    Wang, Zhiyong
    Gao, Junbin
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 156 - 162
  • [30] MVHANet: multi-view hierarchical aggregation network for skeleton-based hand gesture recognition
    Shaochen Li
    Zhenyu Liu
    Guifang Duan
    Jianrong Tan
    Signal, Image and Video Processing, 2023, 17 : 2521 - 2529