Infinite Two-Dimensional Strong Prefix Codes: Characterization and Properties

被引:3
|
作者
Anselmo, Marcella [1 ]
Giammarresi, Dora [2 ]
Madonia, Maria [3 ]
机构
[1] Univ Salerno, Dipartimento Informat, Via Giovanni Paolo 2,132, F-84084 Fisciano, SA, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6-A, I-95125 Catania, Italy
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | 2017年 / 10248卷
关键词
Two-dimensional languages; Prefix codes; Measure; PICTURE; AUTOMATA; TILINGS;
D O I
10.1007/978-3-319-58631-1_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A two-dimensional code is defined as a set of rectangular pictures over an alphabet S such that any picture over S is tilable in at most one way with pictures in X. It is in general undecidable whether a set of pictures is a code, even in the finite case. Recently, finite strong prefix codes were introduced in [3] as a family of decidable picture codes. In this paper we study infinite strong prefix codes and give a characterization for the maximal ones based on iterated extensions. Moreover, we prove some properties regarding the measure of these codes.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 50 条
  • [31] Electronic spectral properties of the two-dimensional infinite-U Hubbard model
    Khatami, Ehsan
    Hansen, Daniel
    Perepelitsky, Edward
    Rigol, Marcos
    Shastry, B. Sriram
    PHYSICAL REVIEW B, 2013, 87 (16):
  • [33] On periodicity of generalized two-dimensional infinite words
    Puzynina, S. A.
    INFORMATION AND COMPUTATION, 2009, 207 (11) : 1315 - 1328
  • [34] Perfect codes in two-dimensional algebraic lattices
    Strapasson, J. E.
    Strey, G.
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [35] Two-dimensional cluster-correcting codes
    Schwartz, M
    Etzion, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) : 2121 - 2132
  • [36] Logical coherence in two-dimensional compass codes
    Pato, Balint
    Staples, J. Wilson
    Brown, Kenneth R.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [37] Potential for two-dimensional codes in automated manufacturing
    Osman, KA
    Furness, A
    ASSEMBLY AUTOMATION, 2000, 20 (01) : 52 - 57
  • [38] TWO-DIMENSIONAL DOT CODES FOR PRODUCT IDENTIFICATION
    VANGILS, WJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) : 620 - 631
  • [39] Bounds on the capacity of constrained two-dimensional codes
    Forchhammer, S
    Justesen, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2659 - 2666
  • [40] Two-dimensional charge constrained modulation codes
    Lin, Y.
    Liu, P.-H.
    1997, IEEE, Piscataway, NJ, United States (33)