Predictive density estimation under the Wasserstein loss

被引:5
|
作者
Matsuda, Takeru [1 ,2 ]
Strawderman, William E. [3 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo, Japan
[2] RIKEN, Ctr Brain Sci, Saitama, Japan
[3] Rutgers State Univ, Dept Stat & Biostat, New Brunswick, NJ USA
关键词
Optimal transport; Predictive density; Shrinkage estimation; Wasserstein distance; BAYES MINIMAX ESTIMATORS; VARIANCE; VECTORS;
D O I
10.1016/j.jspi.2020.05.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate predictive density estimation under the L-2 Wasserstein loss for location families and location-scale families. We show that plug-in densities form a complete class and that the Bayesian predictive density is given by the plug-in density with the posterior mean of the location and scale parameters. We provide Bayesian predictive densities that dominate the best equivariant one in normal models. Simulation results are also presented. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [1] On Predictive Density Estimation under α-Divergence Loss
    L'Moudden, A.
    Marchand, E.
    MATHEMATICAL METHODS OF STATISTICS, 2019, 28 (02) : 127 - 143
  • [2] On Predictive Density Estimation under α-Divergence Loss
    A. L’Moudden
    È. Marchand
    Mathematical Methods of Statistics, 2019, 28 : 127 - 143
  • [3] On predictive density estimation for location families under integrated squared error loss
    Kubokawa, Tatsuya
    Marchand, Eric
    Strawderman, William E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 57 - 74
  • [4] On predictive density estimation for location families under integrated absolute error loss
    Kubokawa, Tatsuya
    Marchand, Eric
    Strawderman, William E.
    BERNOULLI, 2017, 23 (4B) : 3197 - 3212
  • [5] Stochastic domination in predictive density estimation for ordered normal means under α-divergence loss
    Chang, Yuan-Tsung
    Strawderman, William E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 1 - 9
  • [6] On Density Estimation under Relative Entropy Loss Criterion
    M. V. Burnashev
    S. Amari
    Problems of Information Transmission, 2002, 38 (4) : 323 - 346
  • [7] Pitman closeness domination in predictive density estimation for two-ordered normal means under α-divergence loss
    Chang, Yuan-Tsung
    Shinozaki, Nobuo
    Strawderman, William E.
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 1 - 21
  • [8] Density estimation of multivariate samples using Wasserstein distance
    Luini, E.
    Arbenz, P.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 181 - 210
  • [9] Wasserstein regression with empirical measures and density estimation for sparse data
    Zhou, Yidong
    Muller, Hans-Georg
    BIOMETRICS, 2024, 80 (04)
  • [10] Admissible predictive density estimation
    Brown, Lawrence D.
    George, Edward I.
    Xu, Xinyi
    ANNALS OF STATISTICS, 2008, 36 (03): : 1156 - 1170