Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration

被引:38
|
作者
Zhao, LinChuan [1 ]
Zou, HongXiang [1 ,2 ]
Gao, QiuHua [1 ]
Yan, Ge [1 ]
Wu, ZhiYuan [1 ]
Liu, FengRui [1 ]
Wei, KeXiang [2 ]
Yang, Bin [3 ]
Zhang, WenMing [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Hunan Inst Engn, Hunan Prov Key Lab Vehicle Power & Transmiss Syst, Xiangtan 411104, Peoples R China
[3] Shanghai Jiao Tong Univ, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
energy harvesting; vibration; low frequency; magnetically modulated route; MOTION;
D O I
10.1007/s11431-020-1595-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vibration energy harvesting is a promising approach for sustainable energy generation from ambience to meet the development of self-powered systems. Here, we propose a novel compact non-resonant magnetically modulated rotational energy harvester (MMR-EH) for low frequency and irregular vibration. Through the rational arrangement of multiple magnetic fields in space, a ring route with low potential energy is established. A movable magnet can be non-contact modulated by the magnetic force to move along the ring route under irregular vibration, which is instrumental in electromechanical energy conversion. A dynamic model of the MMR-EH is developed based on the energy method and verified experimentally. The effects of key parameters on the magnetically modulated route are analysed. The simulation and experimental results demonstrate that the MMR-EH can effectively harvest the energy from ultra-low frequency (3 Hz) and irregular vibration. At a reciprocating vibration frequency of 10 Hz and an amplitude of 20 mm, the harvester can produce an average power of 0.29 mW.
引用
收藏
页码:2051 / 2062
页数:12
相关论文
共 50 条
  • [31] MODELING OF TRIBOELECTRIC VIBRATION ENERGY HARVESTER UNDER ROTATIONAL MAGNETIC EXCITATION
    Hassan, Mostafa
    Baker, Katy
    Ibrahim, Alwathiqbellah
    PROCEEDINGS OF ASME 2021 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2021), 2021,
  • [32] Dynamic modeling and experimental validation of a low frequency piezoelectric vibration energy harvester via secondary excitation of pressured fluid
    Zhang, Zhonghua
    Gu, Yiqun
    Wang, Shuyun
    Wang, Jin
    Li, Shengjie
    Meng, Fanxu
    Kan, Junwu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [33] Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation
    Zhou, Jiaxi
    Zhao, Xuhui
    Wang, Kai
    Chang, Yaopeng
    Xu, Daolin
    Wen, Guilin
    ENERGY, 2021, 228 (228)
  • [34] Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center
    Chen, Jun
    Liu, Xiangfu
    Wang, Hengyang
    Wang, Sheng
    Guan, Mingjie
    MICROMACHINES, 2022, 13 (03)
  • [35] Design, Analysis and Experimental Investigation of Micro Piezoelectric Vibrational Energy Harvester with Enhanced Power Extraction at Low Frequency
    Muhammad Shahbaz
    Sohail Iqbal
    M. Mubasher Saleem
    R. I. Shakoor
    International Journal of Precision Engineering and Manufacturing, 2023, 24 : 273 - 288
  • [36] Design, Analysis and Experimental Investigation of Micro Piezoelectric Vibrational Energy Harvester with Enhanced Power Extraction at Low Frequency
    Shahbaz, Muhammad
    Iqbal, Sohail
    Saleem, M. Mubasher
    Shakoor, R., I
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2023, 24 (02) : 273 - 288
  • [37] Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion
    Pancharoen, K.
    Zhu, D.
    Beeby, S. P.
    16TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2016), 2016, 773
  • [38] Design and experimental research of magnetically excited rotating piezoelectric energy harvester
    He, Lipeng
    Wang, Zhe
    Yu, Gang
    Shen, Ziyu
    Jiang, Shuai
    Cheng, Guangming
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2022, 28 (07): : 1593 - 1600
  • [39] A multidirectional ultralow-frequency rotational energy harvester: Modeling and characterization
    Rui, Xiaobo
    Li, Hang
    Zhang, Yu
    Han, Xinxin
    Huang, Xinjing
    Feng, Hao
    Zhang, Hui
    Zeng, Zhoumo
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [40] Design and experimental research of magnetically excited rotating piezoelectric energy harvester
    Lipeng He
    Zhe Wang
    Gang Yu
    Ziyu Shen
    Shuai Jiang
    Guangming Cheng
    Microsystem Technologies, 2022, 28 : 1593 - 1600