LINEAR SYSTEMS OF DIOPHANTINE EQUATIONS

被引:0
|
作者
Szechtman, Fernando [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Linear system; Diophantine equation; Smith normal form;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given free modules M subset of L of finite rank f >= 1 over a principal ideal domain R, we give a procedure to construct a basis of L from a basis of M assuming the invariant factors or elementary divisors of L/M are known. Given a matrix A is an element of M-m,M-n(R) of rank r, its nullspace L in R-n is a free R-module of rank f = n - r. We construct a free submodule M of L of rank f naturally associated with A and whose basis is easily computable, we determine the invariant factors of the quotient module L/M and then indicate how to apply the previous procedure to build a basis of L from one of M.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 50 条
  • [31] Linear diophantine equations for discrete tomography
    Ye, Yangbo
    Wang, Ge
    Zhu, Jiehua
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2001, 10 (1-2) : 59 - 66
  • [32] A NOTE ON LINEAR HOMOGENEOUS DIOPHANTINE EQUATIONS
    GRIFFITHS, LW
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (08) : 734 - 736
  • [33] Optical solutions for linear Diophantine equations
    Muntean, O.
    Oltean, M.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (11): : 1728 - 1734
  • [34] Linear Diophantine equations in several variables
    Quinlan, R.
    Shau, M.
    Szechtman, F.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 640 : 67 - 90
  • [35] A new algorithm on linear Diophantine equations
    Shi, Xiquan
    Liu, Fengshan
    Umoh, Hanson M.
    Gibson, Paul
    Hu, Zhitao
    [J]. DISCRETE AND COMPUTATIONAL MATHEMATICS, 2008, : 215 - +
  • [36] EXISTENCE AND REPRESENTATION OF DIOPHANTINE AND MIXED DIOPHANTINE SOLUTIONS TO LINEAR EQUATIONS AND INEQUALITIES
    CHARNES, A
    GRANOT, F
    [J]. DISCRETE MATHEMATICS, 1975, 11 (3-4) : 233 - 248
  • [37] Efficient Craig interpolation for linear Diophantine (dis)equations and linear modular equations
    Himanshu Jain
    Edmund M. Clarke
    Orna Grumberg
    [J]. Formal Methods in System Design, 2009, 35 : 6 - 39
  • [38] Efficient Craig interpolation for linear diophantine (dis)equations and linear modular equations
    Jain, Himanshu
    Clarke, Edmund
    Grumberg, Orna
    [J]. COMPUTER AIDED VERIFICATION, 2008, 5123 : 254 - +
  • [39] Efficient Craig interpolation for linear Diophantine (dis)equations and linear modular equations
    Jain, Himanshu
    Clarke, Edmund M.
    Grumberg, Orna
    [J]. FORMAL METHODS IN SYSTEM DESIGN, 2009, 35 (01) : 6 - 39
  • [40] LINEAR DIOPHANTINE EQUATIONS APPLIED TO MODULAR COORDINATION
    CLARKE, JH
    [J]. AUSTRALIAN JOURNAL OF APPLIED SCIENCE, 1964, 15 (04): : 345 - &