Quantification of CO2-cement-rock interactions at the well-caprockreservoir interface and implications for geological CO2 storage

被引:30
|
作者
Xiao, Ting [1 ,2 ]
McPherson, Brian [1 ,2 ]
Bordelon, Amanda [1 ]
Viswanathan, Hari [3 ]
Dai, Zhenxue [3 ,4 ]
Tian, Hailong [4 ]
Esser, Rich [1 ,2 ]
Jia, Wei [1 ,2 ]
Carey, William [3 ]
机构
[1] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84108 USA
[3] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
[4] Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun, Jilin, Peoples R China
关键词
Wellbore integrity; CO2; leakage; Cement-caprock interface; Reactive transport simulation; CALCIUM-SILICATE-HYDRATE; DIFFUSION-COEFFICIENT; REACTIVE TRANSPORT; PORTLAND-CEMENT; SEQUESTRATION; WATER; MECHANISMS; INTEGRITY; CAPROCK; LEAKAGE;
D O I
10.1016/j.ijggc.2017.05.009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wellbore integrity is a key risk factor for geological CO2 storage. A primary purpose of this study is to analyze the impacts of CO2 leakage through wellbore cement and surrounding caprock with a gap (annulus) in between. Key parameters for cement-CO2 interactions were verified with a cement core sample from the SACROC Unit exposed to CO2 for 30 years. These parameters and other data served as the basis of reactive transport model simulations. The case study example for this analysis is the Farnsworth CO2 enhanced oil recovery (EOR) unit (FWU) in the northern Anadarko Basin in Texas. Specific objectives of this study are: (1) to analyze impacts on wellbore integrity under CO2-rich conditions within an operational time scale; and (2) to predict mechanisms of chemical reactions associated with cement-CO2-brine interactions. Simulation results suggest that cement tortuosity and diffusion coefficient are the two most important parameters that dictate cement carbonation penetration distance. Portlandite (Ca(OH) 2) reacts with CO2 and forms calcite, reducing porosity, in turn directly impacting CO2 leakage rates by infilling pathways. Simulated calcium-silicate-hydrate (CSH) degradation is limited, suggesting that a wellbore will maintain its integrity and structure under the considered conditions. Simulations also suggest that sulfate concentration < 2500 mg/L in the leaking brine would not cause monosulfate degradation. Without an existing fracture, CO2 will likely not enter the caprock, and the cement would not degrade accordingly. For the FWU specifically, the wellbore cement would likely keep its structure and integrity after 100 years. However, if a fracture exists at the cement-caprock interface, calcite dissolution in the limestone caprock fracture could occur and increase the fracture volume, a concern for caprock integrity.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [41] Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
    Miocic, Johannes M.
    Johnson, Gareth
    Bond, Clare E.
    SOLID EARTH, 2019, 10 (03) : 951 - 967
  • [42] CO2 Dipole Moment: A Simple Model and Its Implications for CO2-Rock Interactions
    Calcara, Massimo
    Caricaterra, Matteo
    MINERALS, 2023, 13 (01)
  • [43] Potential for geological storage of CO2 in the Netherlands
    Schreurs, HCE
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 303 - 308
  • [44] CO2 Geological Storage Potential in Korea
    Huh, Dae-Gee
    Park, Yong-Chan
    Yoo, Dong-Geun
    Hwang, Se-Ho
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4881 - 4888
  • [45] AN OVERVIEW OF CO2 GEOLOGICAL STORAGE IN CHINA
    Qiao, Xiaojuan
    Li, Guomin
    MeDermott, Christopher I.
    Wu, Runjian
    Haszeldine, R. Stuart
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (07): : 889 - 896
  • [46] CO2 geological storage and utilization (CGSU)
    Liu, Shuyang
    Li, Hangyu
    Zhang, Yi
    Ren, Bo
    Sun, Qian
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [47] Economics of geological CO2 storage and leakage
    van der Zwaan, Bob
    Gerlagh, Reyer
    CLIMATIC CHANGE, 2009, 93 (3-4) : 285 - 309
  • [48] Capture and geological storage of CO2:: An overview
    Rojey, A
    Torp, TA
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2005, 60 (03): : 445 - 448
  • [49] Economics of geological CO2 storage and leakage
    Bob van der Zwaan
    Reyer Gerlagh
    Climatic Change, 2009, 93 : 285 - 309
  • [50] International developments in geological storage of CO2
    Freund, Paul
    EXPLORATION GEOPHYSICS, 2006, 37 (01) : 1 - 9