Empirical comparison of local structural similarity indices for collaborative-filtering-based recommender systems

被引:9
|
作者
Zhang, Qian-Ming [2 ]
Shang, Ming-Sheng [2 ]
Zeng, Wei [2 ]
Chen, Yong [2 ]
Lue, Linyuan [1 ]
机构
[1] Univ Fribourg, Dept Physics, CH-1700 Fribourg, Switzerland
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Web Sci Ctr, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
collaborative filtering; recommender system; classification; structure-based similarity index; NETWORK;
D O I
10.1016/j.phpro.2010.07.033
中图分类号
O59 [应用物理学];
学科分类号
摘要
Collaborative filtering is one of the most successful recommendation techniques, which can effectively predict the possible future likes of users based on their past preferences. The key problem of this method is how to define the similarity between users. A standard approach is using the correlation between the ratings that two users give to a set of objects, such as Cosine index and Pearson correlation coefficient. However, the costs of computing this kind of indices are relatively high, and thus it is impossible to be applied in the huge-size systems. To solve this problem, in this paper, we introduce six local-structure-based similarity indices and compare their performances with the above two benchmark indices. Experimental results on two data sets demonstrate that the structure-based similarity indices overall outperform the Pearson correlation coefficient. When the data is dense, the structure-based indices can perform competitively good as Cosine index, while with lower computational complexity. Furthermore, when the data is sparse, the structure-based indices give even better results than Cosine index.
引用
收藏
页码:1887 / 1896
页数:10
相关论文
共 50 条
  • [21] Optimizing collaborative filtering recommender systems
    Min, SH
    Han, I
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 313 - 319
  • [22] Collaborative filtering recommender systems taxonomy
    Harris Papadakis
    Antonis Papagrigoriou
    Costas Panagiotakis
    Eleftherios Kosmas
    Paraskevi Fragopoulou
    Knowledge and Information Systems, 2022, 64 : 35 - 74
  • [23] An improvement to collaborative filtering for recommender systems
    Weng, Li-Tung
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings, 2006, : 792 - 795
  • [24] A collaborative filtering recommender systems: Survey
    Aljunid, Mohammed Fadhel
    Manjaiah, D. H.
    Hooshmand, Mohammad Kazim
    Ali, Wasim A.
    Shetty, Amrithkala M.
    Alzoubah, Sadiq Qaid
    NEUROCOMPUTING, 2025, 617
  • [25] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565
  • [26] A framework for collaborative filtering recommender systems
    Bobadilla, Jesus
    Hernando, Antonio
    Ortega, Fernando
    Bernal, Jesus
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14609 - 14623
  • [27] Evaluating collaborative filtering recommender systems
    Herlocker, JL
    Konstan, JA
    Terveen, K
    Riedl, JT
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) : 5 - 53
  • [28] Collaborative filtering recommender systems taxonomy
    Papadakis, Harris
    Papagrigoriou, Antonis
    Panagiotakis, Costas
    Kosmas, Eleftherios
    Fragopoulou, Paraskevi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (01) : 35 - 74
  • [29] Enhancing the accuracy of collaborative filtering based recommender system with novel similarity measure
    Pratibha Yadav
    Jaya Gera
    Harmeet Kaur
    Multimedia Tools and Applications, 2024, 83 : 47609 - 47626
  • [30] Enhancing the accuracy of collaborative filtering based recommender system with novel similarity measure
    Yadav, Pratibha
    Gera, Jaya
    Kaur, Harmeet
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47609 - 47626